RESUMO
Our main aim was to estimate and compare the effects of six environmental variables (air temperature, soil temperature, rainfall, runoff, soil moisture, and the enhanced vegetation index) on excess cases of cutaneous leishmaniasis in Colombia. We used epidemiological data from the Colombian Public Health Surveillance System (January 2007 to December 2019). Environmental data were obtained from remote sensing sources including the National Oceanic and Atmospheric Administration, the Global Land Data Assimilation System (GLDAS), and the Moderate Resolution Imaging Spectroradiometer. Data on population were obtained from the TerriData dataset. We implemented a causal inference approach using a machine learning algorithm to estimate the causal association of the environmental variables on the monthly occurrence of excess cases of cutaneous leishmaniasis. The results showed that the largest causal association corresponded to soil moisture with a lag of 3 months, with an average increase of 8.0% (95% confidence interval [CI] 7.7-8.3%) in the occurrence of excess cases. The temperature-related variables (air temperature and soil temperature) had a positive causal effect on the excess cases of cutaneous leishmaniasis. It is noteworthy that rainfall did not have a statistically significant causal effect. This information could potentially help to monitor and control cutaneous leishmaniasis in Colombia, providing estimates of causal effects using remote sensor variables.
Assuntos
Leishmaniose Cutânea , Colômbia/epidemiologia , Leishmaniose Cutânea/epidemiologia , Humanos , Temperatura , Solo/parasitologia , Chuva , Tempo (Meteorologia) , Aprendizado de MáquinaRESUMO
To compare the environmental space of four Anastrepha species in different ENSO episodes (El Niño, El Neutro and La Niña), we built ecological niche models with NicheA software. We analysed the fundamental niche and the combined establishment risk maps of these species developed with the ArcGisPro combine geoprocess. A comparison of the ellipsoids that represent the fundamental niche existing for the species showed changes in the El Niño, El Neutro and La Niña episodes. For A. grandis in the El Niño vs. El Neutro episodes, there was a Jaccard index of 0.3841, while the comparison between the La Niña vs. El Neutro episodes presented a Jaccard index of 0.6192. A. serpentina in the El Niño vs. El Neutro and La Niña vs. El Neutro episodes presented Jaccard indices of 0.3281 and 0.6328, respectively. For A. obliqua, the comparison between the El Niño vs. El Neutro and La Niña vs. El Neutro episodes presented Jaccard indices of 0.3518 and 0.7472, respectively. For A. striata, comparisons between the episodes of El Niño vs. El Neutro and La Niña vs. El Neutro presented Jaccard indices of 0.3325 and 0.6022, respectively. When studying the comparison between Anastrepha species and the different ENSO climatic episodes, we found that in the El Niño episode, the comparisons with the best environmental similarity were A. obliqua vs. A. striata and A. obliqua vs. A. serpentina, with higher Jaccard indices (0.6064 and 0.6316, respectively). In the El Neutro episode, the comparisons with the best environmental similarity were A. serpentina vs. A. striata and A. obliqua vs. A. striata, which presented higher Jaccard indices (0.4616 and 0.6411, respectively). In the La Niña episode, the comparisons that presented the best environmental similarity were A. obliqua vs. A. serpentina and A. obliqua vs. A. striata, with higher Jaccard indices (0.5982 and 0.6228, respectively). Likewise, our results present the risk maps for the establishment of these species throughout the Neotropics, allowing us to predict the level of risk in order to develop integrated pest management plans.
RESUMO
Visceral Leishmaniasis (VL) is the most severe of the three forms of Leishmaniasis. In the Americas, Brazil and Colombia present more than 90 % of the cases in the region. Our aim in this research was to estimate the association of the incidence rate of Visceral Leishmaniasis with the following environmental variables: the percentage of area suitable for the vector Lutzomyia longipalpis, the episodes of La Niña and El Niño, the Brazilian and Colombian biomes. Epidemiological data were obtained from the Brazilian Notifiable Diseases Information System and the Colombian National Public Health Surveillance System. Environmental data were downloaded from the NASA Giovanni web app, the Modis Sensor database, and the meteorological agencies of Australia, Japan, and the United States of America. Records of the presence of Lu. longipalpis were obtained from public databases and previous studies. As a result, the incidence per 10,000 inhabitants with LEBS for each El Niño-Southern Oscillation (ENSO) episode showed the largest values during El Niño 2015-2016, mainly in Brazil's Northeast and Central regions and the Northeast region of Colombia. Compared with the Neutral 2012-2014 episode, the episodes of El Niño 2015-2016 and La Niña 2010-2011 showed an average increase in the monthly incidence rate of VL, and the average increase was higher during El Niño 2015-2016 (aIRR = 2.304 vs.1.453) We found a positive association between the incidence rate of VL and the El Niño 2015-2016 episode and an impressive% of area suitable for the vector Lu. longipalpis in the Amazon region.An increase of 1 % in the area suitable for the vector Lu. longipalpis leads to an average rise of 0.8 % in the monthly incidence rate of VL. Our study shows a possible association between VL incidence and ENSO, with the most considerable incidence rates observed during El Niño 2015-2016 in Brazil's Northeast and Central regions and the Northeast region of Colombia. The present study is very important to better understand the Visceral Leishmaniasis transmission dynamics.
Assuntos
Leishmaniose Visceral , Humanos , Incidência , Brasil/epidemiologia , Colômbia/epidemiologia , Leishmaniose Visceral/epidemiologia , El Niño Oscilação SulRESUMO
Visceral Leishmaniasis (VL) is the most severe of the three forms of Leishmaniasis. In the Americas, Brazil and Colombia present more than 90 % of the cases in the region. Our aim in this research was to estimate the association of the incidence rate of Visceral Leishmaniasis with the following environmental variables: the percentage of area suitable for the vector Lutzomyia longipalpis, the episodes of La Niña and El Niño, the Brazilian and Colombian biomes. Epidemiological data were obtained from the Brazilian Notifiable Diseases Information System and the Colombian National Public Health Surveillance System. Environmental data were downloaded from the NASA Giovanni web app, the Modis Sensor database, and the meteorological agencies of Australia, Japan, and the United States of America. Records of the presence of Lu. longipalpis were obtained from public databases and previous studies. As a result, the incidence per 10,000 inhabitants with LEBS for each El Niño-Southern Oscillation (ENSO) episode showed the largest values during El Niño 2015–2016, mainly in Brazil's Northeast and Central regions and the Northeast region of Colombia. Compared with the Neutral 2012–2014 episode, the episodes of El Niño 2015–2016 and La Niña 2010–2011 showed an average increase in the monthly incidence rate of VL, and the average increase was higher during El Niño 2015–2016 (aIRR = 2.304 vs.1.453) We found a positive association between the incidence rate of VL and the El Niño 2015–2016 episode and an impressive% of area suitable for the vector Lu. longipalpis in the Amazon region.An increase of 1 % in the area suitable for the vector Lu. longipalpis leads to an average rise of 0.8 % in the monthly incidence rate of VL. Our study shows a possible association between VL incidence and ENSO, with the most considerable incidence rates observed during El Niño 2015–2016 in Brazil's Northeast and Central regions and the Northeast region of Colombia. The present study is very important to better understand the Visceral Leishmaniasis transmission dynamics.
RESUMO
Leishmaniasis is a zoonotic disease transmitted to humans by a protozoan parasite through sandfly vectors and multiple vertebrate hosts. The Pan American Health Organization reported a declining trend in cases, with Brazil, Colombia, Peru, Nicaragua, and Bolivia having the most cases in 2020. There are still knowledge gaps in transmission and the parasite-host relationship. Ecological niche modeling has been used to study host-vector relationships, disease dynamics, and the impact of climate change. Understanding these aspects can aid in early surveillance and vector control strategies. The potential distribution of five host species associated with the transmission of cutaneous leishmaniasis (CL) was modeled. Occurrence data were collected for each host species, and environmental variables were used to build the models. Climatic data from El Niño, La Niña, and Neutral episodes were used to compare the predicted distributions. Additionally, the potential distributions of four vector species were compared to identify overlaps with host species. Niche analysis was conducted to evaluate changes in vector niches across episodes and to identify host-vector pairs based on niche overlap in geographic and environmental spaces. After spatial thinning, 467 records were obtained, and 1,190 candidate models were evaluated for each species. Results showed the distribution of occurrences in the environmental space, highlighting a high risk of extrapolation beyond the calibration areas. Movement-Oriented Parity analysis revealed distinct distribution patterns under different climate conditions, with areas of environmental similarity identified. Bradypus variegatus exhibited a broad potential distribution, while Dasypus novemcinctus and Didelphis marsupialis had more restricted ranges. Sylvilagus braziliensis covered most of the Neotropics. Our study provides valuable insights into ecological niches and geographic ranges of these species, contributing to the understanding of cutaneous leishmaniasis transmission dynamics.
Assuntos
Leishmaniose Cutânea , Psychodidae , Animais , Humanos , El Niño Oscilação Sul , Leishmaniose Cutânea/epidemiologia , Ecossistema , Psychodidae/parasitologia , Colômbia/epidemiologiaRESUMO
Variability and climate change due to anthropic influence have brought about alterations to marine ecosystems, that, in turn, have affected the physiology and metabolism of ectotherm species, such as the common hammerhead shark (Sphyrna lewini). However, the impact that climate variability may have on this species' distribution, particularly in the Eastern Tropical Pacific Marine Corridor, which is considered an area with great marine biodiversity, is unknown. The purpose of this research was to evaluate the effect of derivate impact of climate change on the oceanographic distribution of the hammerhead shark (Sphyrna lewini) in the Eastern Tropical Pacific Marine Corridor, contrasting the present and future scenarios for 2050. The methodology used was an ecological niche model based on the KUENM R package software that uses the maximum entropy algorithm (MaxEnt). The modelling was made for the year 2050 under RCP2.6 and RCP8.5 scenarios. A total of 952 models were made, out of which only one met the statistical parameters established as optimal, for future scenarios. The environmental suitability for S.lewini shows that this species would migrate to the south in the Chilean Pacific, associated with a possible warming that the equatorial zone will have and the possible cooling that the subtropical zone of the South Pacific will have by 2050, the product of changes in oceanographic dynamics.