Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(15): 6994-7000, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470766

RESUMO

Mechanical pressure controls the structural, electric, and magnetic order in solid-state systems, allowing tailoring of their physical properties. A well-established example is ferroelastic ferroelectrics, where the coupling between pressure and the primary symmetry-breaking order parameter enables hysteretic switching of the strain state and ferroelectric domain engineering. Here, we study the pressure-driven response in a nonferroelastic ferroelectric, ErMnO3, where the classical stress-strain coupling is absent and the domain formation is governed by creation-annihilation processes of topological defects. By annealing ErMnO3 polycrystals under variable pressures in the MPa regime, we transform nonferroelastic vortex-like domains into stripe-like domains. The width of the stripe-like domains is determined by the applied pressure as we confirm by three-dimensional phase field simulations, showing that pressure leads to oriented layer-like periodic domains. Our work demonstrates the possibility to utilize mechanical pressure for domain engineering in nonferroelastic ferroelectrics, providing a lever to control their dielectric and piezoelectric responses.

2.
Adv Mater ; 34(45): e2203449, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36084267

RESUMO

The research on topological phenomena in ferroelectric materials has revolutionized the way people understand polar order. Intriguing examples are polar skyrmions, vortex/anti-vortex structures, and ferroelectric incommensurabilties, which promote emergent physical properties ranging from electric-field-controllable chirality to negative capacitance effects. Here, the impact of topologically protected vortices on the domain formation in improper ferroelectric ErMnO3 polycrystals is studied, demonstrating inverted domain scaling behavior compared to classical ferroelectrics. It is observed that as the grain size increases, smaller domains are formed. Phase field simulations reveal that elastic strain fields drive the annihilation of vortex/anti-vortex pairs within the grains and individual vortices at the grain boundaries. The inversion of the domain scaling behavior has far-reaching implications, providing fundamentally new opportunities for topology-based domain engineering and the tuning of the electromechanical and dielectric performance of ferroelectrics in general.

3.
Ultramicroscopy ; 237: 113517, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35427885

RESUMO

This work presents the new template matching capabilities implemented in Pyxem, an open source Python library for analyzing four-dimensional scanning transmission electron microscopy (4D-STEM) data. Template matching is a brute force approach for deriving local crystal orientations. It works by comparing a library of simulated diffraction patterns to experimental patterns collected with nano-beam and precession electron diffraction (NBED and PED). This is a computationally demanding task, therefore the implementation combines efficiency and scalability by utilizing multiple CPU cores or a graphical processing unit (GPU). The code is built on top of the scientific Python ecosystem, and is designed to support custom and reproducible workflows that combine the image processing, template library generation, indexation and visualization all in one environment. The tools are agnostic to file size and format, which is significant in light of the increased adoption of pixelated detectors from different manufacturers. This paper details the implementation and validation of the method. The method is illustrated by calculating orientation maps of nanocrystalline materials and precipitates embedded in a crystalline matrix. The combination of speed and flexibility opens the door for automated parameter studies and real-time on-line orientation mapping inside the TEM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...