Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 11(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302605

RESUMO

INTRODUCTION: Sudden cardiac death (SCD) and early onset cardiomyopathy (CM) in the young will always lead to suspicion of an underlying genetic disorder. Incited by the rapid advances in genetic testing for disease we have revisited families, which previously tested "gene-negative" for familial predominantly pediatric CM, in hopes of finding a causative gene variant. METHODS: 10 different families with non-syndromic pediatric CM or hypertrophic cardiomyopathy (HCM) with severe disease progression and/or heredity for HCM/CM related SCD with "gene-negative" results were included. The index patient underwent genetic testing with a recently updated gene panel for CM and SCD. In case of failure to detect a pathogenic variant in a relevant gene, the index patient and both parents underwent clinical (i.e., partial) exome sequencing (trio-exome) in order to catch pathogenic variants linked to the disease in genes that were not included in the CM panel. RESULTS: The mean age at clinical presentation of the 10 index cases was 12.5 years (boys 13.4 years, n = 8; girls 9 years, n = 2) and the family history burden was 33 HCM/CM cases including 9 HCM-related SCD and one heart transplantation. In 5 (50%) families we identified a genetic variant classified as pathogenic or likely pathogenic, in accordance with the American College of Medical Genetics and Genomics (ACMG) criteria, in MYH7 (n = 2), RBM20, ALPK3, and PGM1, respectively, and genetic variants of unknown significance (VUS) segregating with the disease in an additional 3 (30%) families, in MYBPC3, ABCC9, and FLNC, respectively. CONCLUSION: Our results show the importance of renewed thorough clinical assessment and the necessity to challenge previous genetic test results with more comprehensive updated gene panels or exome sequencing if the initial test failed to identify a causative gene for early onset CM or SCD in children. In pediatric cardiomyopathy cases when the gene panel still fails to detect a causative variant, a trio exome sequencing strategy might resolve some unexplained cases, especially if a multisystemic condition is clinically missed.


Assuntos
Cardiomiopatia Hipertrófica Familiar/genética , Sequenciamento do Exoma , Testes Genéticos , Adolescente , Adulto , Cardiomiopatia Hipertrófica Familiar/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Adulto Jovem
2.
ESC Heart Fail ; 7(3): 1210-1216, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301586

RESUMO

Myocarditis most often affects otherwise healthy athletes and is one of the leading causes of sudden death in children and young adults. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically determined heart muscle disorder with increased risk for paroxysmal ventricular arrhythmias and sudden cardiac death. The clinical picture of myocarditis and ARVC may overlap during the early stages of cardiomyopathy, which may lead to misdiagnosis. In the literature, we found several cases that presented with episodes of myocarditis and ended up with a diagnosis of arrhythmogenic cardiomyopathy, mostly of the left predominant type. The aim of this case presentation is to shed light upon a possible link between myocarditis, a desmoplakin (DSP) gene variant, and ARVC by describing a case of male monozygotic twins who presented with symptoms and signs of myocarditis at 17 and 18 years of age, respectively. One of them also had a recurrent episode of myocarditis. The twins and their family were extensively examined including electrocardiograms (ECG), biochemistry, multimodal cardiac imaging, myocardial biopsy, genetic analysis, repeated cardiac magnetic resonance (CMR) and echocardiography over time. Both twins presented with chest pain, ECG with slight ST-T elevation, and increased troponin T levels. CMR demonstrated an affected left ventricle with comprehensive inflammatory, subepicardial changes consistent with myocarditis. The right ventricle did not appear to have any abnormalities. Genotype analysis revealed a nonsense heterozygous variant in the desmoplakin (DSP) gene [NM_004415.2:c.2521_2522del (p.Gln841Aspfs*9)] that is considered likely pathogenic and presumably ARVC related. There was no previous family history of heart disease. There might be a common pathophysiology of ARVC, associated with desmosomal dysfunction, and myocarditis. In our case, both twins have an affected left ventricle without any right ventricular involvement, and they are carriers of a novel DSP variant that is likely associated with ARVC. The extensive inflammation of the LV that was apparent in the CMR may or may not be the primary event of ARVC. Nevertheless, our data suggest that irrespective of a possible link here to ARVC, genetic testing for arrhythmogenic cardiomyopathy might be advisable for patients with recurrent myocarditis associated with a family history of myocarditis.


Assuntos
Displasia Arritmogênica Ventricular Direita , Miocardite , Adolescente , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/genética , Desmoplaquinas/genética , Testes Genéticos , Humanos , Masculino , Miocardite/complicações , Miocardite/diagnóstico , Miocardite/genética , Gêmeos Monozigóticos
3.
Forensic Sci Int Genet ; 43: 102111, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31563034

RESUMO

INTRODUCTION: Sudden cardiac death (SCD) in the young is rare and should always lead to suspicion of a genetic cardiac disorder. We describe a family, in which the proband was a girl deceased by sudden cardiac death in the playground at thirteen years of age. The index-patient had short stature, cleft palate but no previous cardiac symptoms. We found an uncommon cause of cardiomyopathy, due to a congenital disorder of glycosylation (CDG), previously described to cause a variable range of usually mild symptoms, and not previously found to cause SCD as the first symptom of the condition. METHODS: The index patient underwent postmortem genetic testing/molecular autopsy for genes known to cause SCD, without a detection of causative agent, why two siblings of similar phenotype as the deceased sister underwent clinical-exome genetic sequencing (next generation sequencing). All first-degree relatives underwent clinical examination including cardiac ultrasound, Holter-ECG, exercise stress test and biochemistry panel. RESULTS: A genetic variant in the gene for phosphoglucomutase 1 (PGM1) was identified in the index patient and her two brothers, all were found to be homozygous for the genetic variant (G230E) NM_002633.2:c.689 G > A in PGM1. This variant has been linked to a congenital disorder of glycosylation (PGM1-CDG), explaining the clinical picture of short stature, cleft palate, liver engagement and cardiomyopathy. During follow-up one of the brothers died unexpectedly after physical exertion during daily life at the age of twelve years. The other brother fainted during similar circumstances at the age of thirteen years. Both parents and three other siblings were found to be heterozygous gene carriers without risk for the disease. CONCLUSION: Our findings suggest that there is a need of multidisciplinary discussion and genetic testing after unexpected cardiac death in the young. We have to be more flexible in our evaluation of diseases and to consider even uncommon diseases including rare recessive inherited disorders. Our findings also suggest that the autosomal recessive PGM1-CDG might be highly associated with life-threatening cardiomyopathy with arrhythmia or sudden cardiac death as the first symptom presenting from childhood and adolescence.


Assuntos
Cardiomiopatias/genética , Defeitos Congênitos da Glicosilação/genética , Morte Súbita Cardíaca/etiologia , Mutação , Fosfoglucomutase/genética , Adolescente , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/patologia , Ecocardiografia , Eletrocardiografia , Feminino , Fibrose , Testes Genéticos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino , Miocárdio/patologia , Linhagem , Análise de Sequência de DNA , Irmãos , Somália/etnologia , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...