Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Bioorg Chem ; 147: 107383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653151

RESUMO

Selective inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) is implicated as a new therapeutic modality for the development of new-generation anti-inflammatory drugs. Here, we present the discovery of new and potent inhibitors of human mPGES-1, i.e., compounds 13, 15-25, 29-30 with IC50 values in the range of 5.6-82.3 nM in a cell-free assay of prostaglandin (PG)E2 formation. We also demonstrate that 20 (TG554, IC50 = 5.6 nM) suppresses leukotriene (LT) biosynthesis at low µM concentrations, providing a benchmark compound that dually intervenes with inflammatory PGE2 and LT biosynthesis. Comprehensive lipid mediator (LM) metabololipidomics with activated human monocyte-derived macrophages showed that TG554 selectively inhibits inflammatory PGE2 formation over all cyclooxygenase (COX)-derived prostanoids, does not cause substrate shunting towards 5-lipoxygenase (5-LOX) pathway, and does not interfere with the biosynthesis of the specialized pro-resolving mediators as observed with COX inhibitors, providing a new chemotype for effective and safer anti-inflammatory drug development.


Assuntos
Relação Dose-Resposta a Droga , Oxidiazóis , Prostaglandina-E Sintases , Prostaglandina-E Sintases/antagonistas & inibidores , Prostaglandina-E Sintases/metabolismo , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Oxidiazóis/química , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Microssomos/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química
2.
Cancer Res ; 84(9): 1475-1490, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38319231

RESUMO

Trastuzumab emtansine (T-DM1) was the first and one of the most successful antibody-drug conjugates (ADC) approved for treating refractory HER2-positive breast cancer. Despite its initial clinical efficacy, resistance is unfortunately common, necessitating approaches to improve response. Here, we found that in sensitive cells, T-DM1 induced spindle assembly checkpoint (SAC)-dependent immunogenic cell death (ICD), an immune-priming form of cell death. The payload of T-DM1 mediated ICD by inducing eIF2α phosphorylation, surface exposure of calreticulin, ATP and HMGB1 release, and secretion of ICD-related cytokines, all of which were lost in resistance. Accordingly, ICD-related gene signatures in pretreatment samples correlated with clinical response to T-DM1-containing therapy, and increased infiltration of antitumor CD8+ T cells in posttreatment samples was correlated with better T-DM1 response. Transforming acidic coiled-coil containing 3 (TACC3) was overexpressed in T-DM1-resistant cells, and T-DM1 responsive patients had reduced TACC3 protein expression whereas nonresponders exhibited increased TACC3 expression during T-DM1 treatment. Notably, genetic or pharmacologic inhibition of TACC3 restored T-DM1-induced SAC activation and induction of ICD markers in vitro. Finally, TACC3 inhibition in vivo elicited ICD in a vaccination assay and potentiated the antitumor efficacy of T-DM1 by inducing dendritic cell maturation and enhancing intratumoral infiltration of cytotoxic T cells. Together, these results illustrate that ICD is a key mechanism of action of T-DM1 that is lost in resistance and that targeting TACC3 can restore T-DM1-mediated ICD and overcome resistance. SIGNIFICANCE: Loss of induction of immunogenic cell death in response to T-DM1 leads to resistance that can be overcome by targeting TACC3, providing an attractive strategy to improve the efficacy of T-DM1.


Assuntos
Ado-Trastuzumab Emtansina , Neoplasias da Mama , Morte Celular Imunogênica , Proteínas Associadas aos Microtúbulos , Receptor ErbB-2 , Humanos , Feminino , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Morte Celular Imunogênica/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Ado-Trastuzumab Emtansina/farmacologia , Ado-Trastuzumab Emtansina/uso terapêutico , Animais , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Linfócitos T CD8-Positivos/imunologia
3.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745348

RESUMO

Immunogenic cell death (ICD), an immune-priming form of cell death, has been shown to be induced by several different anti-cancer therapies. Despite being the first and one of the most successful antibody-drug conjugates (ADCs) approved for refractory HER2-positive breast cancer, little is known if response and resistance to trastuzumab emtansine (T-DM1) involves ICD modulation that can be leveraged to enhance T-DM1 response. Here, we report that T-DM1 induces spindle assembly checkpoint (SAC)-dependent ICD in sensitive cells by inducing eIF2α phosphorylation, surface exposure of calreticulin, ATP and HMGB1 release, and secretion of ICD-related cytokines, all of which are lost in resistance. Accordingly, an ICD-related gene signature correlates with clinical response to T-DM1-containing therapy. We found that transforming acidic coiled-coil containing 3 (TACC3) is overexpressed in T-DM1 resistant cells, and that T-DM1 responsive patients have reduced TACC3 protein while the non-responders exhibited increased TACC3 expression during T-DM1 treatment. Notably, genetic or pharmacological inhibition of TACC3 revives T-DM1-induced SAC activation and induction of ICD markers in vitro. Finally, TACC3 inhibition elicits ICD in vivo shown by vaccination assay, and it potentiates T-DM1 by inducing dendritic cell (DC) maturation and enhancing infiltration of cytotoxic T cells in the human HER2-overexpressing MMTV.f.huHER2#5 (Fo5) transgenic model. Together, our results show that ICD is a key mechanism of action of T-DM1 which is lost in resistance, and that targeting TACC3 restores T-DM1-mediated ICD and overcomes resistance.

4.
Cell Death Differ ; 30(5): 1305-1319, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36864125

RESUMO

Centrosome amplification (CA) is a hallmark of cancer that is strongly associated with highly aggressive disease and worse clinical outcome. Clustering extra centrosomes is a major coping mechanism required for faithful mitosis of cancer cells with CA that would otherwise undergo mitotic catastrophe and cell death. However, its underlying molecular mechanisms have not been fully described. Furthermore, little is known about the processes and players triggering aggressiveness of cells with CA beyond mitosis. Here, we identified Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) to be overexpressed in tumors with CA, and its high expression is associated with dramatically worse clinical outcome. We demonstrated, for the first time, that TACC3 forms distinct functional interactomes regulating different processes in mitosis and interphase to ensure proliferation and survival of cancer cells with CA. Mitotic TACC3 interacts with the Kinesin Family Member C1 (KIFC1) to cluster extra centrosomes for mitotic progression, and inhibition of this interaction leads to mitotic cell death via multipolar spindle formation. Interphase TACC3 interacts with the nucleosome remodeling and deacetylase (NuRD) complex (HDAC2 and MBD2) in nucleus to inhibit the expression of key tumor suppressors (e.g., p21, p16 and APAF1) driving G1/S progression, and its inhibition blocks these interactions and causes p53-independent G1 arrest and apoptosis. Notably, inducing CA by p53 loss/mutation increases the expression of TACC3 and KIFC1 via FOXM1 and renders cancer cells highly sensitive to TACC3 inhibition. Targeting TACC3 by guide RNAs or small molecule inhibitors strongly inhibits growth of organoids and breast cancer cell line- and patient-derived xenografts with CA by induction of multipolar spindles, mitotic and G1 arrest. Altogether, our results show that TACC3 is a multifunctional driver of highly aggressive breast tumors with CA and that targeting TACC3 is a promising approach to tackle this disease.


Assuntos
Neoplasias da Mama , Fuso Acromático , Humanos , Feminino , Fuso Acromático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias da Mama/patologia , Proteína Supressora de Tumor p53/metabolismo , Centrossomo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo
5.
ACS Omega ; 8(2): 2445-2454, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687110

RESUMO

Inhibition of soluble epoxide hydrolase (sEH) is indicated as a new therapeutic modality against a variety of inflammatory diseases, including metabolic, renal, and cardiovascular disorders. In our ongoing research on sEH inhibitors, we synthesized novel benzoxazolone-5-urea analogues with highly potent sEH inhibitory properties inspired by the crystallographic fragment scaffolds incorporating a single H-bond donor/acceptor pair. The tractable SAR results indicated that the aryl or benzyl fragments flanking the benzoxazolone-urea scaffold conferred potent sEH inhibition, and compounds 31-39 inhibited the sEH activity with IC50 values in the range of 0.39-570 nM. Docking studies and molecular dynamics simulations with the most potent analogue 33 provided valuable insights into potential binding interactions of the inhibitor in the sEH binding region. In conclusion, benzoxazolone-5-ureas furnished with benzyl groups on the urea function can be regarded as novel lead structures, which allow the development of advanced analogues with enhanced properties against sEH.

6.
ACS Omega ; 7(41): 36206-36226, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278052

RESUMO

The vicinal diaryl heterocyclic framework has been widely used for the development of compounds with significant bioactivities. In this study, a series of diaryl heterocycles were designed and synthesized based on an in-house diaryl isoxazole derivative (9), and most of the newly synthesized derivatives demonstrated moderate to good antiproliferative activities against a panel of hepatocellular carcinoma and breast cancer cells, exemplified with the diaryl isoxazole 11 and the diaryl pyrazole 85 with IC50 values in the range of 0.7-9.5 µM. Treatments with both 11 and 85 induced apoptosis in these tumor cells, and they displayed antitumor activity in vivo in the Mahlavu hepatocellular carcinoma and the MDA-MB-231 breast cancer xenograft models, indicating that these compounds could be considered as leads for further development of antitumor agents. Important structural features of this compound class for the antitumor activity have also been proposed, which warrant further exploration to guide the design of new and more potent diaryl heterocycles.

7.
ACS Omega ; 7(41): 36354-36365, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278102

RESUMO

Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs), which are endowed with beneficial biological activities as they reduce inflammation, regulate endothelial tone, improve mitochondrial function, and decrease oxidative stress. Therefore, inhibition of sEH for maintaining high EET levels is implicated as a new therapeutic modality with broad clinical applications for metabolic, renal, and cardiovascular disorders. In our search for new sEH inhibitors, we designed and synthesized novel amide analogues of the quinazolinone-7-carboxylic acid derivative 5, a previously discovered 5-lipoxygenase-activating protein (FLAP) inhibitor, to evaluate their potential for inhibiting sEH. As a result, we identified new quinazolinone-7-carboxamides that demonstrated selective sEH inhibition with decreased FLAP inhibitor properties. The tractable SAR results indicated that the amide and thiobenzyl fragments flanking the quinazolinone nucleus are critical features governing the potent sEH inhibition, and compounds 34, 35, 37, and 43 inhibited the sEH activity with IC50 values of 0.30-0.66 µM. Compound 34 also inhibited the FLAP-mediated leukotriene biosynthesis (IC50 = 2.91 µM). In conclusion, quinazolinone-7-carboxamides can be regarded as novel lead structures, and newer analogues with improved efficiency against sEH along with or without FLAP inhibition can be generated.

8.
Arch Pharm (Weinheim) ; 355(8): e2200082, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35500130

RESUMO

A series of novel piperazine urea derivatives with thiadiazole moieties were designed, synthesized, and investigated for their inhibition potential against human fatty acid amide hydrolase (hFAAH). The urea derivatives possessing p-chlorophenylthiadiazole and benzylpiperazine fragments (19-22) were effective inhibitors of hFAAH. Notably, compounds with 4-chlorobenzyl (19) and 4-fluorobenzyl (20) tails at the piperazine side were identified as the most active inhibitors with IC50 values of 0.13 and 0.22 µM, respectively. The preincubation test of 19 was in agreement with the irreversible binding mechanism. Molecular docking was performed to explore the potential binding interactions with key amino acid residues at the FAAH active site. These newly identified inhibitors could serve as leads for the further development of potent and selective FAAH inhibitors for FAAH-associated diseases.


Assuntos
Tiadiazóis , Ureia , Amidoidrolases , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Piperazinas/química , Piperazinas/farmacologia , Relação Estrutura-Atividade , Tiadiazóis/farmacologia , Ureia/farmacologia
9.
ChemMedChem ; 17(12): e202200137, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35466565

RESUMO

Soluble epoxide hydrolase (sEH) is implicated as a potential therapeutic target for inflammation-related pathologies in the context of cardiovascular, central nervous system and metabolic diseases. In our search for novel sEH inhibitors, we designed and synthesized novel analogs of the piperazine urea derivative 4, a previously discovered dual microsomal prostaglandin E2 synthase-1 (mPGES-1)/soluble epoxide hydrolase (sEH) inhibitor, to evaluate their potential as sEH inhibitors. We identified two 1,3,4-oxadiazol-5-one and -thione congeners (compounds 19 and 20), which demonstrated selective sEH inhibition with IC50 values in the two-digit nanomolar range (42 and 56 nM, respectively). These results suggest that the installation of terminal 1,3,4-oxadiazol-5-one/thione functions to the benzyl end can be regarded as a promising secondary pharmacophore in addition to the urea group for sEH inhibition, and compound 19 can be regarded as novel lead structure for further optimization of improved sEH inhibitors.


Assuntos
Epóxido Hidrolases , Compostos Heterocíclicos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/metabolismo , Piperazinas/farmacologia , Relação Estrutura-Atividade , Tionas , Ureia
10.
Eur J Med Chem ; 231: 114167, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152061

RESUMO

Microsomal prostaglandin E2 synthase-1 (mPGES-1) is recognized as a promising therapeutic target for next-generation anti-inflammatory drugs to treat inflammatory diseases. In this study, we report the identification of new, potent and selective inhibitors of human mPGES-1 such as compounds 10, 31 and 49 with IC50 of 0.03-0.09 µM in a cell-free assay of PGE2 production. Compound 10 and 49 also inhibited leukotriene C4 synthase (LTC4S) at sub-µM concentrations (IC50 = 0.7 and 0.4 µM, respectively), affording compounds dually targeting inflammatory PGE2 and cysteinyl leukotriene (cys-LT) biosynthesis. However, compound 31 showed substantial selectivity towards mPGES-1 (IC50 = 0.03 µM) with a decreased inhibitory activity on LTC4S (IC50 = 2.8 µM), and also on other related targets such as FLAP and 5-LO. These oxadiazole thione-benzimidazole derivatives warrant further exploration of new and alternative analogs that may lead to the identification of novel derivatives with potent anti-inflammatory properties.


Assuntos
Leucotrieno C4 , Microssomos , Anti-Inflamatórios/farmacologia , Benzimidazóis/farmacologia , Dinoprostona , Humanos , Prostaglandina-E Sintases
11.
Eur J Med Chem ; 221: 113489, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951549

RESUMO

In our effort for the development of novel anticancer therapeutics, a series of isoxazole-piperazine analogues were prepared, and primarily screened for their antiproliferative potential against hepatocellular carcinoma (HCC; Huh7/Mahlavu) and breast (MCF-7) cancer cells. All compounds demonstrated potent to moderate cytotoxicity on all cell lines with IC50 values in the range of 0.09-11.7 µM. Further biological studies with 6a and 13d in HCC cells have shown that both compounds induced G1 or G2/M arrests resulting in apoptotic cell death. Subsequent analysis of proteins involved in cell cycle progression as well as proliferation of HCC cells revealed that 6a and 13d may affect cellular survival pathways differently depending on the mutation profiles of cells (p53 and PTEN), epidermal/mesenchymal characteristics, and activation of cell mechanisms through p53 dependent/independent pathways. Lastly, we have demonstrated the potential anti-stemness properties of these compounds in which the proportion of liver CSCs in Huh7 cells (CD133+/EpCAM+) were significantly reduced by 6a and 13d. Furthermore, both compounds caused a significant reduction in expression of stemness markers, NANOG or OCT4 proteins, in Mahlavu and Huh7 cells, as well as resulted in a decreased sphere formation capacity in Huh7 cells. Together, these novel isoxazole-piperazine derivatives may possess potential as leads for development of effective anti-cancer drugs against HCC cells with stem cell-like properties.


Assuntos
Antineoplásicos/farmacologia , Isoxazóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Piperazina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoxazóis/química , Neoplasias Hepáticas/patologia , Estrutura Molecular , Piperazina/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Bioorg Chem ; 112: 104861, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33826984

RESUMO

Microsomal prostaglandin E2 synthase-1 (mPGES-1), 5-lipoxygenase (5-LO) and 5- lipoxygenase-activating protein (FLAP) are key for biosynthesis of proinflammatory lipid mediators and pharmacologically relevant drug targets. In the present study, we made an attempt to explore the role of small heteroaromatic fragments on the 4,5-diarylisoxazol-3-carboxylic acid scaffold, which are selected to interact with focused regions in the active sites of mPGES-1, 5-LO and FLAP. We report that the simple structural variations on the benzyloxyaryl side-arm of the scaffold significantly influence the selectivity against mPGES-1, 5-LO and FLAP, enabling to produce multi-target inhibitors of these protein targets, exemplified by compound 18 (IC50 mPGES-1 = 0.16 µM; IC50 5-LO = 0.39 µM) with in vivo efficacy in animal model of inflammation. The computationally modeled binding structures of these new inhibitors for three targets provide clues for rational design of modified structures as multi-target inhibitors. In conclusion, the simple synthetic procedure, and the possibility of enhancing the potency of this class of inhibitors through structural modifications pave the way for further development of new multi-target inhibitors against mPGES-1, 5-LO and FLAP, with potential application as anti-inflammatory agents.


Assuntos
Androstenóis/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Ácidos Carboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Prostaglandina-E Sintases/antagonistas & inibidores , Adolescente , Adulto , Idoso , Androstenóis/síntese química , Androstenóis/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Estrutura Molecular , Prostaglandina-E Sintases/metabolismo , Relação Estrutura-Atividade , Adulto Jovem
13.
J Pharm Pharmacol ; 73(6): 808-815, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33730148

RESUMO

OBJECTIVES: In cancer treatment, it is important to prevent or slow down metastasis as well as preventing the proliferation of cancer cells. In this study, we aimed to find pyrazole compounds with antimigratory properties. METHODS: The 'PASSonline' programme was used to determine the possible pharmacological activities of the pyrazole compounds selected from the library, and two pyrazole derivatives were identified as a transcription factor STAT inhibitor with a high probability. There are studies known that JAK/STAT pathway is related to cancer cell migration, thus the possible antimigratory effects of these two synthesized pyrazole compounds were examined in A549 cancer cells. KEY FINDINGS: Our data demonstrated that compound-2 at different concentrations significantly inhibited cell migration in A549 cells. Then, the effects of these compounds on STAT activation were evaluated. We reported that 10 µM compound-2 induced a significant phosphorylation of STAT1 suggesting that STAT1 activation may be responsible for the antimigratory effect of compound-2. CONCLUSIONS: Taken together, the compound-2 is a promising compound with the antimigratory activity for cancer treatment, and further studies are needed to synthesize more active derivatives by evaluating the structure-activity relationship of leading compound-2.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Pirazóis/farmacologia , Células A549 , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Relação Dose-Resposta a Droga , Humanos , Fosforilação/efeitos dos fármacos , Pirazóis/administração & dosagem , Pirazóis/química , Fator de Transcrição STAT1/metabolismo , Relação Estrutura-Atividade
14.
Mol Cancer Ther ; 19(6): 1243-1254, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32217742

RESUMO

TACC3, a transforming acidic coiled-coil (TACC) family member, is frequently upregulated in a broad spectrum of cancers, including breast cancer. It plays critical roles in protecting microtubule stability and centrosome integrity that is often dysregulated in cancers; therefore, making TACC3 a highly attractive therapeutic target. Here, we identified a new TACC3-targeting chemotype, BO-264, through the screening of in-house compound collection. Direct interaction between BO-264 and TACC3 was validated by using several biochemical methods, including drug affinity responsive target stability, cellular thermal shift assay, and isothermal titration calorimetry. BO-264 demonstrated superior antiproliferative activity to the two currently reported TACC3 inhibitors, especially in aggressive breast cancer subtypes, basal and HER2+, via spindle assembly checkpoint-dependent mitotic arrest, DNA damage, and apoptosis, while the cytotoxicity against normal breast cells was negligible. Furthermore, BO-264 significantly decreased centrosomal TACC3 during both mitosis and interphase. BO-264 displayed potent antiproliferative activity (∼90% have less than 1 µmol/L GI50 value) in the NCI-60 cell line panel compromising of nine different cancer types. Noteworthy, BO-264 significantly inhibited the growth of cells harboring FGFR3-TACC3 fusion, an oncogenic driver in diverse malignancies. Importantly, its oral administration significantly impaired tumor growth in immunocompromised and immunocompetent breast and colon cancer mouse models, and increased survival without any major toxicity. Finally, TACC3 expression has been identified as strong independent prognostic factor in breast cancer and strongly prognostic in several different cancers. Overall, we identified a novel and highly potent TACC3 inhibitor as a novel potential anticancer agent, inducing spindle abnormalities and mitotic cell death.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Mitose , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Movimento Celular , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/genética , Prognóstico , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Fuso Acromático , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Bioorg Chem ; 95: 103544, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915112

RESUMO

We describe the synthesis of a series of 2-arylbenzimidazole derivatives bearing sulfonamide functionality (4a-d, 7a-c and 10) as well as hydroxamic acid (15a-b), carboxylic acid (16a-b), carboxamide (17a-b) and boronic acid (22a-b and 26) functionalities, which act as human carbonic anhydrase (hCA, EC 4.2.1.1) inhibitors. The newly synthesized benzimidazole derivatives were evaluated against 4 physiologically relevant CA isoforms (hCA I, II, IX, and XII), and especially the sulfonamide-containing benzimidazoles demonstrated intriguing inhibitory activity against tumor associated CA IX and XII with KI values in the range of 5.2-29.3 nM and 9.9-41.7 nM, respectively. Notably, compound 4c was the most potent and selective CA IX (KI = 6.6 nM) and XII (KI = 9.9 nM) inhibitor with a significant selectivity ratio over cytosolic CA I and II isoforms in the range of 3.4-25.2. In addition, compounds having hydroxamic acid (15a-b) or carboxylic acid (16a-b) functionalities resulted in greater selectivity ratios for CA IX/XII over CAI/II in the range of 4.1-121.5 although with KI values in lower micromolar potency (KIs = 0.36-0.85 µM for CA IX/XII).


Assuntos
Antígenos de Neoplasias/efeitos dos fármacos , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Anidrase Carbônica IX/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/efeitos dos fármacos , Humanos , Análise Espectral/métodos
16.
Exp Clin Transplant ; 17(6): 813-818, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-28350290

RESUMO

OBJECTIVES: Allogeneic hematopoietic stem cell transplant is a life-saving treatment, but donor numbers in Turkey do not meet the increasing demand for this procedure. Here, our objectives were (1) to assess the frequency of HLA-matched related donors in the Turkish population and (2) to identify the HLA antigens and haplotypes that are most frequent in Turkey. MATERIALS AND METHODS: The HLA genotypes of 841 consecutive recipients and 3071 family members were retrospectively reviewed. RESULTS: Matched related donors were identified for 368/841 recipients (44%). Extended family donor searches were performed for 111/181 pediatric recipients (61%), with nonsibling matched related donors found for 23 patients (21%). Matched related donors were found for a significantly higher proportion of pediatric patients (52%) than adult patients (41%) (odds ratio of 2.5; 95% confidence interval, 1.9-4.1; P = .02). The percentage of pediatric versus adult patients with 3 or more siblings was 13% versus 46% (odds ratio of 5.6; 95% confidence interval, 3.6-8.5; P = .001). The most frequent HLA class I antigens at each locus were HLA-A*02 (20.2%), HLA-B*35 (19.5%), and HLA-C*07 (19.8%). The most frequent HLA class II antigens at each locus were HLA-DRB1*11 (21.6%) and HLA-DQB1*03 (40.2%). The most common 3-locus haplotypes were HLA-A*24 B*35 DRB1*11 (F:0.020) and HLA-A*01 B*08 DRB1*03 (F:0.015). When adult and pediatric groups were combined, the most common locus haplotypes were found in 43/345 sibling donors (12%) and in 7/23 nonsibling pediatric donors (30%) (odds ratio of 2.7; 95% confidence interval, 1.2-6.4; P = .02). CONCLUSIONS: The results indicate that, in Turkey, it can be beneficial to revise donor search algorithms to include an extended family donor search before an unrelated donor search. This type of search can be effective because of the HLA haplotype diversity in Turkey, the frequency of consanguinity, and the country's limited donor pool.


Assuntos
Seleção do Doador , Família , Testes Genéticos , Antígenos HLA/genética , Transplante de Células-Tronco Hematopoéticas , Teste de Histocompatibilidade , Histocompatibilidade , Doadores Vivos , Frequência do Gene , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Antígenos HLA/imunologia , Haplótipos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Valor Preditivo dos Testes , Estudos Retrospectivos , Resultado do Tratamento , Turquia
17.
ChemMedChem ; 14(2): 273-281, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30537167

RESUMO

Microsomal prostaglandin E2 synthase-1 (mPGES-1) is a potential therapeutic target for the treatment of inflammatory diseases and certain types of cancer. To identify novel scaffolds for mPGES-1 inhibition, we applied a virtual screening (VS) protocol that comprises molecular docking, fingerprints-based clustering with diversity-based selection, protein-ligand interactions fingerprints, and molecular dynamics (MD) simulations with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. The hits identified were carefully analyzed to ensure the selection of novel scaffolds that establish stable interactions with key residues in the mPGES-1 binding pocket and inhibit the catalytic activity of the enzyme. As a result, we discovered two promising chemotypes, 4-(2-chlorophenyl)-N-[(2-{[(propan-2-yl)sulfamoyl]methyl}phenyl)methyl]piperazine-1-carboxamide (6) and N-(4-methoxy-3-{[4-(6-methyl-1,3-benzothiazol-2-yl)phenyl]sulfamoyl}phenyl)acetamide (8), as non-acidic mPGES-1 inhibitors with IC50 values of 1.2 and 1.3 µm, respectively. Minimal structural optimization of 8 resulted in three more compounds with promising improvements in inhibitory activity (IC50 : 0.3-0.6 µm). The unprecedented chemical structures of 6 and 8, which are amenable to further derivatization, reveal a new and attractive approach for the development of mPGES-1 inhibitors with potential anti-inflammatory and anticancer properties.


Assuntos
Anti-Inflamatórios/química , Antineoplásicos/química , Inibidores Enzimáticos/química , Prostaglandina-E Sintases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Células A549 , Anti-Inflamatórios/metabolismo , Antineoplásicos/metabolismo , Benzotiazóis/química , Benzotiazóis/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Piperazinas/química , Piperazinas/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade , Termodinâmica
18.
J Enzyme Inhib Med Chem ; 33(1): 1352-1361, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30251900

RESUMO

In our endeavour towards the development of effective anticancer therapeutics, a novel series of isoxazole-piperazine hybrids were synthesized and evaluated for their cytotoxic activities against human liver (Huh7 and Mahlavu) and breast (MCF-7) cancer cell lines. Within series, compounds 5l-o showed the most potent cytotoxicity on all cell lines with IC50 values in the range of 0.3-3.7 µM. To explore the mechanistic aspects fundamental to the observed activity, further biological studies with 5m and 5o in liver cancer cells were carried out. We have demonstrated that 5m and 5o induce oxidative stress in PTEN adequate Huh7 and PTEN deficient Mahlavu human liver cancer cells leading to apoptosis and cell cycle arrest at different phases. Further analysis of the proteins involved in apoptosis and cell cycle revealed that 5m and 5o caused an inhibition of cell survival pathway through Akt hyperphosphorylation and apoptosis and cell cycle arrest through p53 protein activation.


Assuntos
Antineoplásicos/farmacologia , Isoxazóis/farmacologia , Piperazinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Piperazina , Piperazinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Eur J Med Chem ; 150: 876-899, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29597170

RESUMO

Leukotrienes (LTs) and prostaglandin (PG)E2 are enzymatically produced from arachidonic acid and represent highly bioactive lipid mediators with pro-inflammatory functions. Here, we report on novel multi-target inhibitors that potently and dually interfere with 5-lipoxygenase-activating protein (FLAP) and microsomal prostaglandin E2 synthase (mPGES)-1 in LT and PGE2 biosynthesis, based on the previously identified selective FLAP inhibitor BRP-7 (8, IC50 = 0.31 µM). C (5)-substitution of the benzimidazole ring of BRP-7 by carboxylic acid and its bioisosteres provided compounds, exemplified by 57 that potently suppress LT formation (IC50 = 0.05 µM) by targeting FLAP along with inhibition of mPGES-1 (IC50 = 0.42 µM). Besides FLAP, also 5-lipoxygenase (5-LO) and LTC4 synthase activities were inhibited by 57, albeit with lower potency (IC50 = 0.6 and 6.2 µM) than FLAP. Docking studies and molecular dynamic simulations with FLAP, mPGES-1 and 5-LO provide valuable insights into potential binding interactions of the inhibitors with their targets. Together, these novel benzimidazole derivatives may possess potential as leads for development of effective anti-inflammatory drugs with multi-target properties for dually inhibiting LT and PGE2 production.


Assuntos
Benzimidazóis/farmacologia , Dinoprostona/antagonistas & inibidores , Leucotrienos/biossíntese , Benzimidazóis/síntese química , Benzimidazóis/química , Dinoprostona/biossíntese , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 153: 34-48, 2018 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-28784429

RESUMO

Leukotrienes are proinflammatory lipid mediators associated with diverse chronic inflammatory diseases such as asthma, COPD, IBD, arthritis, atherosclerosis, dermatitis and cancer. Cellular leukotrienes are produced from arachidonic acid via the 5-lipoxygenase pathway in which the 5-lipoxygenase activating protein, also named as FLAP, plays a critical role by operating as a regulatory protein for efficient transfer of arachidonic acid to 5-lipoxygenase. By blocking leukotriene production, FLAP inhibitors may behave as broad-spectrum leukotriene modulators, which might be of therapeutic use for chronic inflammatory diseases requiring anti-leukotriene therapy. The early development of FLAP inhibitors (i.e. MK-886, MK-591, BAY-X-1005) mostly concentrated on asthma cure, and resulted in promising readouts in preclinical and clinical studies with asthma patients. Following the recent elucidation of the 3D-structure of FLAP, development of new inhibitor chemotypes is highly accelerated, eventually leading to the evolution of many un-drug-like structures into more drug-like entities such as AZD6642 and BI665915 as development candidates. The most clinically advanced FLAP inhibitor to date is GSK2190918 (formerly AM803) that has successfully completed phase II clinical trials in asthmatics. Concluding, although there are no FLAP inhibitors reached to the drug approval phase yet, due to the rising number of indications for anti-LT therapy such as atherosclerosis, FLAP inhibitor development remains a significant research field. FLAP inhibitors reviewed herein are classified into four sub-classes as the first-generation FLAP inhibitors (indole and quinoline derivatives), the second-generation FLAP inhibitors (diaryl-alkanes and biaryl amino-heteroarenes), the benzimidazole-containing FLAP inhibitors and other FLAP inhibitors with polypharmacology for easiness of the reader. Hence, we meticulously summarize how FLAP inhibitors historically developed from scratch to their current advanced state, and leave the reader with a positive view that a FLAP inhibitor might soon reach to the need of patients who may require anti-LT therapy.


Assuntos
Inibidores da Proteína Ativadora de 5-Lipoxigenase/química , Inibidores da Proteína Ativadora de 5-Lipoxigenase/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Descoberta de Drogas , Antagonistas de Leucotrienos/química , Antagonistas de Leucotrienos/farmacologia , Leucotrienos/metabolismo , Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Descoberta de Drogas/métodos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...