Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
BMC Chem ; 18(1): 102, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773663

RESUMO

BACKGROUND: Carbazole-based molecules containing thiosemicarbazide functional groups are recognized for their diverse biological activities, particularly in enhancing therapeutic anticancer effects through inhibiting crucial pathways. These derivatives also exhibit noteworthy antioxidant properties. OBJECTIVES: This study aims to synthesize, characterize, and evaluate the antioxidant and anticancer activities of 18 novel carbazole derivatives. METHODS: The radical scavenging capabilities of the compounds were assessed using the 2,2-diphenyl-1-picrylhydrazyl assay. Antiproliferative activities were evaluated on MCF-7 cancer cell lines through viability assays. Additionally, the modulation of the PI3K/Akt/mTOR pathway, apoptosis/necrosis induction, and cell cycle analysis were conducted for the most promising anticancer agents. RESULTS: nine compounds showed potent antioxidant activities with IC50 values lower than the positive control acarbose, with compounds 4 h and 4y exhibiting the highest potency (IC50 values of 0.73 and 0.38 µM, respectively). Furthermore, compounds 4o and 4r displayed significant anticancer effects, with IC50 values of 2.02 and 4.99 µM, respectively. Compound 4o, in particular, exhibited promising activity by targeting the PI3K/Akt/mTOR signaling pathway, inhibiting tumor survival, inducing apoptosis, and causing cell cycle arrest in MCF-7 cell lines. Furthermore, compound 4o was showed significant antimicrobial activities against S. aureus and E. coli, and antifungal effect against C. albicans. Its potential to overcome drug resistance through this pathway inhibition highlights its promise as an anticancer agent. Molecular docking simulations supported these findings, revealing favorable binding profiles and interactions within the active sites of the enzymes PI3K, AKT1, and mTOR. Moreover, assessing the druggability of the newly synthesized thiosemicarbazide derivatives demonstrated optimal physicochemical properties, further endorsing their potential as drug candidates.

3.
Photodiagnosis Photodyn Ther ; 42: 103346, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36809810

RESUMO

Photodynamic therapy (PDT) is a method that is used in cancer treatment. The main therapeutic effect is the production of singlet oxygen (1O2). Phthalocyanines for PDT produce high singlet oxygen with absorbers of about 600-700 nm. AIM: It is aimed to analyze cancer cell pathways by flow cytometry analysis and cancer-related genes with q-PCR device by applying phthalocyanine L1ZnPC, which we use as photosensitizer in photodynamic therapy, in HELA cell line. In this study, we investigate the molecular basis of L1ZnPC's anti-cancer activity. MATERIAL METHOD: The cytotoxic effects of L1ZnPC, a phthalocyanine obtained from our previous study, in HELA cells were evaluated and it was determined that it led to a high rate of death as a result. The result of photodynamic therapy was analyzed using q-PCR. From the data received at the conclusion of this investigation, gene expression values were calculated, and expression levels were assessed using the 2-∆∆Ct method to examine the relative changes in these values. Cell death pathways were interpreted with the FLOW cytometer device. One-Way Analysis of Variance (ANOVA) and the Tukey-Kramer Multiple Comparison Test with Post-hoc Test were used for the statistical analysis. CONCLUSION: In our study, it was observed that HELA cancer cells underwent apoptosis at a rate of 80% with drug application plus photodynamic therapy by flow cytometry method. According to q-PCR results, CT values ​​of eight out of eighty-four genes were found to be significant and their association with cancer was evaluated. L1ZnPC is a new phthalocyanine used in this study and our findings should be supported by further studies. For this reason, different analyses are needed to be performed with this drug in different cancer cell lines. In conclusion, according to our results, this drug looks promising but still needs to be analyzed through new studies. It is necessary to examine in detail which signaling pathways they use and their mechanism of action. For this, additional experiments are required.


Assuntos
Variação Genética , Fotoquimioterapia , Células HeLa , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/terapia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
4.
Curr Pharm Biotechnol ; 24(7): 889-912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36154590

RESUMO

Non-coding RNAs have a role in gene regulation and cellular metabolism control. Metabolism produces metabolites which are small molecules formed during the metabolic process. So far, a direct relationship between metabolites and genes is not fully established; however, pseudogenes and their progenitor genes regulate health and disease states. Other non-coding RNAs also contribute to this regulation at different cellular processes. Accumulation and depletion of metabolites accompany the dynamic equilibrium of health and disease state. In this study, metabolites, their roles in the cell, and the link between metabolites and non-coding RNAs are discussed.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA