Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37609295

RESUMO

By influencing the type and quality of information that relay cells transmit, local interneurons in thalamus have a powerful impact on cortex. To define the sensory features that these inhibitory neurons encode, we mapped receptive fields of optogenetically identified cells in the murine dorsolateral geniculate nucleus. Although few in number, local interneurons had diverse types of receptive fields, like their counterpart relay cells. This result differs markedly from visual cortex, where inhibitory cells are typically less selective than excitatory cells. To explore how thalamic interneurons might converge on relay cells, we took a computational approach. Using an evolutionary algorithm to search through a library of interneuron models generated from our results, we show that aggregated output from different groups of local interneurons can simulate the inhibitory component of the relay cell's receptive field. Thus, our work provides proof-of-concept that groups of diverse interneurons can supply feature-specific inhibition to relay cells.

2.
J Neurosci ; 40(26): 5019-5032, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32350041

RESUMO

Even though the lateral geniculate nucleus of the thalamus (LGN) is associated with form vision, that is not its sole role. Only the dorsal portion of LGN (dLGN) projects to V1. The ventral division (vLGN) connects subcortically, sending inhibitory projections to sensorimotor structures, including the superior colliculus (SC) and regions associated with certain behavioral states, such as fear (Monavarfeshani et al., 2017; Salay et al., 2018). We combined computational, physiological, and anatomical approaches to explore visual processing in vLGN of mice of both sexes, making comparisons to dLGN and SC for perspective. Compatible with past, qualitative descriptions, the receptive fields we quantified in vLGN were larger than those in dLGN, and most cells preferred bright versus dark stimuli (Harrington, 1997). Dendritic arbors spanned the length and/or width of vLGN and were often asymmetric, positioned to collect input from large but discrete territories. By contrast, arbors in dLGN are compact (Krahe et al., 2011). Consistent with spatially coarse receptive fields in vLGN, visually evoked changes in spike timing were less precise than for dLGN and SC. Notably, however, the membrane currents and spikes of some cells in vLGN displayed gamma oscillations whose phase and strength varied with stimulus pattern, as for SC (Stitt et al., 2013). Thus, vLGN can engage its targets using oscillation-based and conventional rate codes. Finally, dark shadows activate SC and drive escape responses, whereas vLGN prefers bright stimuli. Thus, one function of long-range inhibitory projections from vLGN might be to enable movement by releasing motor targets, such as SC, from suppression.SIGNIFICANCE STATEMENT Only the dorsal lateral geniculate nucleus (dLGN) connects to cortex to serve form vision; the ventral division (vLGN) projects subcortically to sensorimotor nuclei, including the superior colliculus (SC), via long-range inhibitory connections. Here, we asked how vLGN processes visual information, making comparisons with dLGN and SC for perspective. Cells in vLGN versus dLGN had wider dendritic arbors, larger receptive fields, and fired with lower temporal precision, consistent with a modulatory role. Like SC, but not dLGN, visual stimuli entrained oscillations in vLGN, perhaps reflecting shared strategies for visuomotor processing. Finally, most neurons in vLGN preferred bright shapes, whereas dark stimuli activate SC and drive escape behaviors, suggesting that vLGN enables rapid movement by releasing target motor structures from inhibition.


Assuntos
Corpos Geniculados/fisiologia , Percepção Visual/fisiologia , Animais , Potenciais Evocados Visuais/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Visuais/fisiologia
3.
J Neurosci ; 36(43): 10949-10963, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27798177

RESUMO

Comparative physiological and anatomical studies have greatly advanced our understanding of sensory systems. Many lines of evidence show that the murine lateral geniculate nucleus (LGN) has unique attributes, compared with other species such as cat and monkey. For example, in rodent, thalamic receptive field structure is markedly diverse, and many cells are sensitive to stimulus orientation and direction. To explore shared and different strategies of synaptic integration across species, we made whole-cell recordings in vivo from the murine LGN during the presentation of visual stimuli, analyzed the results with different computational approaches, and compared our findings with those from cat. As for carnivores, murine cells with classical center-surround receptive fields had a "push-pull" structure of excitation and inhibition within a given On or Off subregion. These cells compose the largest single population in the murine LGN (∼40%), indicating that push-pull is key in the form vision pathway across species. For two cell types with overlapping On and Off responses, which recalled either W3 or suppressed-by-contrast ganglion cells in murine retina, inhibition took a different form and was most pronounced for spatially extensive stimuli. Other On-Off cells were selective for stimulus orientation and direction. In these cases, retinal inputs were tuned and, for oriented cells, the second-order subunit of the receptive field predicted the preferred angle. By contrast, suppression was not tuned and appeared to sharpen stimulus selectivity. Together, our results provide new perspectives on the role of excitation and inhibition in retinothalamic processing. SIGNIFICANCE STATEMENT: We explored the murine lateral geniculate nucleus from a comparative physiological perspective. In cat, most retinal cells have center-surround receptive fields and push-pull excitation and inhibition, including neurons with the smallest (highest acuity) receptive fields. The same is true for thalamic relay cells. In mouse retina, the most numerous cell type has the smallest receptive fields but lacks push-pull. The most common receptive field in rodent thalamus, however, is center-surround with push-pull. Thus, receptive field structure supersedes size per se for form vision. Further, for many orientation-selective cells, the second-order component of the receptive field aligned with stimulus preference, whereas suppression was untuned. Thus, inhibition may improve spatial resolution and sharpen other forms of selectivity in rodent lateral geniculate nucleus.


Assuntos
Corpos Geniculados/fisiologia , Rede Nervosa/fisiologia , Sinapses/fisiologia , Campos Visuais/fisiologia , Vias Visuais/fisiopatologia , Percepção Visual/fisiologia , Animais , Mapeamento Encefálico , Gatos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Inibição Neural/fisiologia , Ratos , Ratos Long-Evans , Células Ganglionares da Retina/fisiologia , Especificidade da Espécie , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...