Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38473012

RESUMO

(1) Background: This study aimed to assess the periodontitis burden in systemic sclerosis patients and the possible association between them, and the degree to which some potential risk factors and two potential diagnostic biomarkers may account for this association. (2) Methods: This cross-sectional study included a test group (systemic sclerosis patients) and a control group (non-systemic sclerosis patients). Both groups benefited from medical, periodontal examination and saliva sampling to determine the salivary flow rate and two inflammatory biomarkers (calprotectin, psoriasin). A systemic sclerosis severity scale was established. (3) Results: In the studied groups, comparable periodontitis rates of 88.68% and 85.85%, respectively, were identified. There were no significant differences in the severity of periodontitis among different systemic sclerosis severity, or in the positivity for anti-centromere and anti-SCL70 antibodies. Musculoskeletal lesions were significantly more common in stage III/IV periodontitis (n = 33, 86.84%) than in those in stage I/II (n = 1, 100%, and n = 3, 37.5%, respectively) (p = 0.007). Comparable levels of the inflammatory mediators were displayed by the two groups. There were no significant differences in calprotectin and psoriasin levels between diffuse and limited forms of systemic sclerosis. (4) Conclusions: Within the limitations of the current study, no associations between systemic sclerosis and periodontitis, or between their risk factors, could be proven.

2.
Biosensors (Basel) ; 14(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38248418

RESUMO

This study delves into the intricate interaction between DNA and nanosystems, exploring its potential implications for biomedical applications. The focus lies in understanding the adsorption geometry of DNA when in proximity to plasmonic nanoparticles, utilizing ultrasensitive vibrational spectroscopy techniques. Employing a combined Raman-SERS analysis, we conducted an in-depth examination to clarify the molecular geometry of interactions between DNA and silver nanoparticles. Our findings also reveal distinctive spectral features regarding DNA samples due to their distinctive genome stability. To understand the subtle differences occurring between normal and cancerous DNA, their thermal stability was investigated by means of SERS measurement performed before and after a thermal treatment at 94 °C. It was proved that thermal treatment did not affect DNA integrity in the case of normal cells. On the other hand, due to epimutation pattern that characterizes cancerous DNA, variations between spectra recorded before and after heat treatment were observed, suggesting genome instability. These findings highlight the potential of DNA analysis using SERS for cancer detection. They demonstrate the applicability of this approach to overcoming challenges associated with low DNA concentrations (e.g., circulating tumor DNA) that occur in biofluids. In conclusion, this research contributes significant insights into the nanoscale behavior of DNA in the presence of nanosystems.


Assuntos
Nanopartículas Metálicas , Neoplasias , Prata , DNA , Adsorção , Epigênese Genética , Neoplasias/diagnóstico
3.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955966

RESUMO

We report a very simple, rapid and reproducible method for the fabrication of anisotropic silver nanostars (AgNS) that can be successfully used as highly efficient SERS substrates for different bioanalytes, even in the case of a near-infra-red (NIR) excitation laser. The nanostars have been synthesized using the chemical reduction of Ag+ ions by trisodium citrate. This is the first research reporting the synthesis of AgNS using only trisodium citrate as a reducing and stabilizing agent. The key elements of this original synthesis procedure are rapid hydrothermal synthesis of silver nanostars followed by a cooling down procedure by immersion in a water bath. The synthesis was performed in a sealed bottom flask homogenously heated and brought to a boil in a microwave oven. After 60 s, the colloidal solution was cooled down to room temperature by immersion in a water bath at 35 °C. The as-synthesized AgNS were washed by centrifugation and used for SERS analysis of test molecules (methylene blue) as well as biological analytes: pharmaceutical compounds with various Raman cross sections (doxorubicin, atenolol & metoprolol), cell lysates and amino acids (methionine & cysteine). UV-Vis absorption spectroscopy, (Scanning) Transmission Electron Microscopy ((S)TEM) and Atomic Force Microscopy (AFM) have been employed for investigating nanostars' physical properties.


Assuntos
Prata , Análise Espectral Raman , Microscopia de Força Atômica , Micro-Ondas , Prata/química , Análise Espectral Raman/métodos , Água
4.
Sensors (Basel) ; 23(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616944

RESUMO

DNA methylation is a crucial epigenetic hallmark of cancer development but the experimental methods able to prove nanoscale modifications are very scarce. Over time, Raman and its counterpart, surface-enhanced Raman scattering (SERS), became one of the most promising techniques capable to investigate nanoscale modifications of DNA bases. In our study, we employed Raman/SERS to highlight the differences between normal and leukemia DNA samples and to evaluate the effects of a 5-azacytidine treatment on leukemia cells. To obtain spectral information related to DNA base modifications, a DNA incubation step of 4 min at 94 °C, similar to the one performed in the case of RT-PCR experiments, was conducted prior to any measurements. In this way, reproducible Raman/SERS spectra were collected for all genomic DNA samples. Our Raman results allowed discrimination between normal and cancer DNAs based on their different aggregation behavior induced by the distinct methylation landscape present in the DNA samples. On the other hand, the SERS spectra collected on the same DNA samples show a very intense vibrational band located at 1008 cm-1 assigned to a rocking vibration of 5-methyl-cytosine. The intensity of this band strongly decreases in cancer DNA due to the modification of the methylation landscape occurring in cancers. We believe that under controlled experimental conditions, this vibrational band could be used as a powerful marker for demonstrating epigenetic reprogramming in cancer by means of SERS.


Assuntos
Leucemia , Vibração , Humanos , Desmetilação do DNA , Análise Espectral Raman/métodos , DNA/química , Leucemia/genética
5.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499159

RESUMO

Allium sativum L. (garlic bulbs) and Allium fistulosum L. (Welsh onion leaves) showed quantitative differences of identified compounds: allicin and alliin (380 µg/mL and 1410 µg/mL in garlic; 20 µg/mL and 145 µg/mL in Welsh onion), and the phenolic compounds (chlorogenic acid, p-coumaric acid, ferulic acid, gentisic acid, 4-hydroxybenzoic acid, kaempferol, isoquercitrin, quercitrin, quercetin, and rutin). The chemical composition determined the inhibitory activity of Allium extracts in a dose-dependent manner, on human normal cells (BJ-IC50 0.8841% garlic/0.2433% Welsh onion and HaCaT-IC50 1.086% garlic/0.6197% Welsh onion) and tumor cells (DLD-1-IC50 5.482%/2.124%; MDA-MB-231-IC50 6.375%/2.464%; MCF-7-IC50 6.131%/3.353%; and SK-MES-1-IC50 4.651%/5.819%). At high concentrations, the cytotoxic activity of each extract, on normal cells, was confirmed by: the 50% of the growth inhibition concentration (IC50) value, the cell death induced by necrosis, and biochemical determination of LDH, catalase, and Caspase-3. The four tumor cell lines treated with high concentrations (10%, 5%, 2.5%, and 1.25%) of garlic extract showed different sensibility, appreciated on the base of IC50 value for the most sensitive cell line (SK-MES-1), and the less sensitive (MDA-MB-231) cell line. The high concentrations of Welsh onion extract (5%, 2.5%, and 1.25%) induced pH changes in the culture medium and SK-MES-1 being the less sensitive cell line.


Assuntos
Allium/química , Neoplasias/tratamento farmacológico , Fitoterapia , Caspase 3/metabolismo , Catalase/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Alho/química , Humanos , L-Lactato Desidrogenase/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Cebolas/química , Fenóis/farmacologia , Fenóis/toxicidade , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade
6.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440679

RESUMO

The concern for implementing bioactive nutraceuticals in antioxidant-related therapies is of great importance for skin homeostasis in benign or malignant diseases. In order to elucidate some novel insights of Lycium barbarum (Goji berry) activity on skin cells, the present study focused on its active compound zeaxanthin. By targeting the stemness markers CD44 and CD105, with deep implications in skin oxidative stress mechanisms, we revealed, for the first time, selectivity in zeaxanthin activity. When applied in vitro on BJ human fibroblast cell line versus the A375 malignant melanoma cells, despite the moderate cytotoxicity, the zeaxanthin-rich extracts 1 and 2 were able to downregulate significantly the CD44 and CD105 membrane expression and extracellular secretion in A375, and to upregulate them in BJ cells. At mechanistic level, the present study is the first to demonstrate that the zeaxanthin-rich Goji extracts are able to influence selectively the mitogen-activated protein kinases (MAPK): ERK, JNK and p38 in normal BJ versus tumor-derived A375 skin cells. These results point out towards the applications of zeaxanthin from L. barbarum as a cytoprotective agent in normal skin and raises questions about its use as an antitumor prodrug alone or in combination with standard therapy.


Assuntos
Adesão Celular/efeitos dos fármacos , Lycium/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Zeaxantinas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Frutas/química , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Extratos Vegetais/isolamento & purificação , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Zeaxantinas/isolamento & purificação
7.
Plants (Basel) ; 11(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009103

RESUMO

Leontopodium alpinum Cass. (edelweiss) is recognized as a frequent constituent of anti-aging skin care products, providing increased antioxidant and anti-inflammatory defense. Considering the growing demand and the protected status of edelweiss in many countries, alternative methods of production have been developed, one of them being callus culturing. This study reports the phytochemical composition of a methanolic extract of L. alpinum callus cultures, characterized by liquid chromatography coupled to ion-mobility high resolution mass spectrometry (UPLC/IM-HRMS). The methanolic extract exhibited strong free radical scavenging activity (122.19 ± 7.28 mg AAE/g dw), while the quantitative evaluation revealed that four major constituents (phenylpropanoid derivatives) represent 57.13% (m/m) of the extract. Consequently, a screening of antiproliferative effects was performed on ten cancer cell lines, representative of prostate, colon, lung and breast cancer, showing inhibition of colony formation in all cases. These results provide a comprehensive phytochemical characterization of L. alpinum callus cultures using advanced IM-HRMS, while the in vitro explorations confirmed the potent antioxidant properties of edelweiss which are worth exploring further in cancer prevention.

8.
J Pers Med ; 10(4)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322818

RESUMO

Triple-negative breast cancer (TNBC) represents an unmet medical need due to a high rate of metastatic occurrence and poor overall survival, pathology aggressiveness, heterogeneous clinical behavior and limited cytotoxic chemotherapy options available because of the absence of targetable receptors. The current standard of care in TNBC is represented by chemotherapy and surgery associated with low overall survival and high relapse rates. Hopes of overcoming current limited and unspecific approaches of TNBC therapy lie in studying the metabolic rewiring of these types of breast cancer, thus understanding the mechanisms involved in the occurrence and progression of the disease. Due to its heterogeneity, a clinically relevant sub-classification of this type of breast cancer based on biomarker panels is greatly needed in order to guide treatment decisions. Mass spectrometry-based omics may provide very useful tools to address the current needs of targetable biomarker discovery and validation. The present review aims to provide a comprehensive view of the current clinical diagnosis and therapy of TNBC highlighting the need for a new approach. Therefore, this paper offers a detailed mass spectrometry-based snapshot of TNBC metabolic adjustment, emphasizing a complex network of variables governing the diverse and aggressive clinical behavior of TNBC.

9.
Molecules ; 25(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331446

RESUMO

5-fluorouracil (5-FU) is an anticancer drug used to inhibit the proliferation of many different tumor cells. Since severe events are associated with this compound, its combination with different anticancer drugs or adjuvants would allow the use of a significantly lower dose of 5-FU. In this study, we highlighted that the combination of allicin with 5-FU inhibited the cell migration and proliferation of colorectal and lung cancer cells. 5-FU inhibited cell growth with a similar inhibitory concentration for both normal and tumor cells (~200µM), while allicin showed different inhibitory concentrations. With an IC50 of 8.625 µM, lung cancer cells were the most sensitive to allicin. Compared to 5-FU and allicin single-agent treatments, the co-treatment showed a reduced viability rate, with p < 0.05. The morphological changes were visible on all three cell lines, indicating that the treatment inhibited the proliferation of both normal and tumor cells. We highlighted different cell death mechanisms-apoptosis for lung cancer and a non-apoptotic cell death for colorectal cancer. The synergistic antitumor effect of 5-FU combined with allicin was visible against lung and colorectal carcinoma cells. Better results were obtained when a lower concentration of 5-FU was combined with allicin than the single-agent treatment at IC50.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Ácidos Sulfínicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos , Sinergismo Farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...