Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(8): 9013-9026, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434827

RESUMO

This study presents a new procedure to condense DNA molecules and precipitate them onto a glass slide. The resulting DNA molecules undergo autonomous self-assembly, creating closed superstructures on the micrometer scale, which are called DNA hyperstructures. These structures can be observed using low-magnification (4×) light microscopy. Precisely controlling the alcohol/glacial acetic acid ratio and DNA concentration during precipitation enabled the regulation of structure compaction on the slide. The alcohol/glacial acetic acid ratio is inversely proportional to the DNA concentration to achieve optimal compaction on the slide. Confocal microscopy fluorescence analysis of DNA extracts stained with DAPI shows that nucleic acids self-assemble to form structures during precipitation on the slide. This methodology is relevant since it facilitates the precipitation and visualization of DNA, regardless of its origin or molecular weight. To confirm its versatility, results with DNA extracted from human peripheral blood, the Lambda virus, and plasmid pBR322 are presented. The study examined the morphological features of DNA hyperstructures in both healthy individuals and those diagnosed with different medical conditions or illnesses, revealing distinct patterns specific to each case. This innovative technology has potential for disease detection in peripheral blood samples, ranging from cancer and Alzheimer's disease to determining the gender of the gestational product at an early stage.

2.
Nanomaterials (Basel) ; 14(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38202561

RESUMO

The study, synthesis, and application of nanomaterials in medicine have grown exponentially in recent years. An example of this is the understanding of how nanomaterials activate or regulate the immune system, particularly macrophages. In this work, nanoparticles were synthesized using Rumex hymenosepalus as a reducing agent (AgRhNPs). According to thermogravimetric analysis, the metal content of nanoparticles is 55.5% by weight. The size of the particles ranges from 5-26 nm, with an average of 11 nm, and they possess an fcc crystalline structure. The presence of extract molecules on the nanomaterial was confirmed by UV-Vis and FTIR. It was found by UPLC-qTOF that the most abundant compounds in Rh extract are flavonols, flavones, isoflavones, chalcones, and anthocyanidins. The viability and apoptosis of the THP-1 cell line were evaluated for AgRhNPs, commercial nanoparticles (AgCNPs), and Rh extract. The results indicate a minimal cytotoxic and apoptotic effect at a concentration of 12.5 µg/mL for both nanoparticles and 25 µg/mL for Rh extract. The interaction of the THP-1 cell line and treatments was used to evaluate the polarization of monocyte subsets in conjunction with an evaluation of CCR2, Tie-2, and Arg-1 expression. The AgRhNPs nanoparticles and Rh extract neither exhibited cytotoxicity in the THP-1 monocyte cell line. Additionally, the treatments mentioned above exhibited anti-inflammatory effects by maintaining the classical monocyte phenotype CD14++CD16, reducing pro-inflammatory interleukin IL-6 production, and increasing IL-4 production.

3.
ACS Omega ; 7(19): 16380-16390, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601331

RESUMO

A series of bis-N-substituted tetrandrine derivatives carrying different aromatic substituents attached to both nitrogen atoms of the natural alkaloid were studied with double-stranded model DNAs (dsDNAs) to examine the binding properties and mechanism. Variable-temperature molecular recognition studies using UV-vis and fluorescence techniques revealed the thermodynamic parameters, ΔH, ΔS, and ΔG, showing that the tetrandrine derivatives exhibit high affinity toward dsDNA (K ≈ 105-107 M-1), particularly the bis(methyl)anthraquinone (BAqT) and bis(ethyl)indole compounds (BInT). Viscometry experiments, ethidium displacement assays, and molecular modeling studies enabled elucidation of the possible binding mode, indicating that the compounds exhibit a synergic interaction mode involving intercalation of one of the N-aryl substituents and interaction of the molecular skeleton in the major groove of the dsDNA. Cytotoxicity tests of the derivatives with tumor and nontumor cell lines demonstrated low cytotoxicity of these compounds, with the exception of the bis(methyl)pyrene (BPyrT) derivative, which is significantly more cytotoxic than the remaining derivatives, with IC50 values against the LS-180, A-549, and ARPE-19 cell lines that are similar to natural tetrandrine. Finally, complementary electrochemical characterization studies unveiled good electrochemical stability of the compounds.

4.
ACS Omega ; 6(38): 24338-24350, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604617

RESUMO

A green method for synthesizing gold nanoparticles is proposed using hydroethanolic extract of Vitex mollis fruit (Vm extract) as a reducer and stabilizer. The formation of gold nanoparticles synthesized with Vm extract (AuVmNPs) was monitored by measuring the ultraviolet-visible spectra. The morphology and crystalline phase were determined using scanning electron microscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Synthesized nanoparticles were generally spherical, and the size distribution obtained by transmission electron microscopy shows two populations with mean sizes of 12.5 and 22.5 nm. Cell viability assay using MTT and cellular apoptosis studies using annexin V on human umbilical vein endothelial cells (HUVECs) and the human mammary epithelial cell line (MCF10A) indicate that AuVmNPs have low toxicity. Cell migration tests indicate that AuVmNPs significantly inhibit HUVEC cell migration in a dose-dependent manner. The evaluation of the localization of AuVmNPs in HUVECs using confocal laser scanning microscopy indicates that nanoparticles penetrate cells and are found in the cytosol without preferential distribution and without entering the nucleus. The inhibitory effect on cellular migration and low toxicity suggest AuVmNPs as appropriate candidates in future studies of antiangiogenic activity.

5.
Nanoscale Res Lett ; 16(1): 118, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34292415

RESUMO

In this work, we used a sequential method of synthesis for gold-silver bimetallic nanoparticles with core@shell structure (Au@AgNPs). Rumex hymenosepalus root extract (Rh), which presents high content in catechins and stilbenes, was used as reductor agent in nanoparticles synthesis. Size distribution obtained by Transmission Electron Microscopy (TEM) gives a mean diameter of 36 ± 11 nm for Au@AgNPs, 24 ± 4 nm for gold nanoparticles (AuNPs), and 13 ± 3 nm for silver nanoparticles (AgNPs). The geometrical shapes of NPs were principally quasi-spherical. The thickness of the silver shell over AuNPs is around 6 nm and covered by active biomolecules onto the surface. Nanoparticles characterization included high angle annular dark field images (HAADF) recorded with a scanning transmission electron microscope (STEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-Ray Diffraction (XRD), UV-Vis Spectroscopy, Zeta Potential, and Dynamic Light Scattering (DLS). Fourier Transform Infrared Spectrometer (FTIR), and X-ray Photoelectron Spectroscopy (XPS) show that nanoparticles are stabilized by extract molecules. A growth kinetics study was performed using the Gompertz model for microorganisms exposed to nanomaterials. The results indicate that AgNPs and Au@AgNPs affect the lag phase and growth rate of Escherichia coli and Candida albicans in a dose-dependent manner, with a better response for Au@AgNPs.

6.
Sci Rep ; 11(1): 11312, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050228

RESUMO

In this work we use Mimosa tenuiflora (MtE) extracts as reducing agents to synthesize silver nanoparticles (AgMt NPs) which were characterized by DPPH and Total Polyphenols Assays, UV-visible, X-ray diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis (TGA). AgMt NPs possess average sizes of 21 nm and fcc crystalline structure, it was also confirmed that the MtE is present in the AgMt NPs even after the cleaning protocol applied. Subsequently, carbopol hydrogels were made and the MtE and the synthesized AgMt NPs were dispersed in different gels (MtE-G and AgMt NPs-G, respectively) at 100 µg/g concentration. The gels were characterized by UV-Vis, IR, and rheology. Antimicrobial tests were performed using Staphylococcus aureus and Escherichia coli. Burn wound healing was evaluated in a second-degree burn injury on a Wistar rats model for 14 days and additional skin biopsies were examined with histopathological analysis. Gel with commercial silver nanoparticles (Ag NPs) was prepared and employed as a control on the biological assays. Hydrogel system containing silver nanoparticles synthesized with Mimosa tenuiflora (AgMt NPs-G) is a promising therapeutic strategy for burn wound healing, this due to bactericidal and anti-inflammatory effects, which promotes a more effective recovery (in percentage terms) by damaged area.


Assuntos
Queimaduras/tratamento farmacológico , Mimosa/química , Extratos Vegetais/administração & dosagem , Prata/administração & dosagem , Animais , Avaliação Pré-Clínica de Medicamentos , Hidrogéis/química , Hidrogéis/uso terapêutico , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Fitoterapia , Casca de Planta/química , Extratos Vegetais/química , Ratos Wistar , Prata/química , Cicatrização/efeitos dos fármacos
7.
Nanoscale Res Lett ; 14(1): 334, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31654146

RESUMO

Synthesis of gold nanoparticles (AuNPs) with plant extracts has gained great interest in the field of biomedicine due to its wide variety of health applications. In the present work, AuNPs were synthesized with Mimosa tenuiflora (Mt) bark extract at different metallic precursor concentrations. Mt extract was obtained by mixing the tree bark in ethanol-water. The antioxidant capacity of extract was evaluated using 2,2-diphenyl-1-picrylhydrazyl and total polyphenol assay. AuNPs were characterized by transmission electron microscopy, X-ray diffraction, UV-Vis and Fourier transform infrared spectroscopy, and X-ray photoelectron spectrometry for functional group determination onto their surface. AuMt (colloids formed by AuNPs and molecules of Mt) exhibit multiple shapes with sizes between 20 and 200 nm. AuMt were tested on methylene blue degradation in homogeneous catalysis adding sodium borohydride. The smallest NPs (AuMt1) have a degradation coefficient of 0.008/s and reach 50% degradation in 190s. Cell viability and cytotoxicity were evaluated in human umbilical vein endothelial cells (HUVEC), and a moderate cytotoxic effect at 24 and 48 h was found. However, toxicity does not behave in a dose-dependent manner. Cellular internalization of AuMt on HUVEC cells was analyzed by confocal laser scanning microscopy. For AuMt1, it can be observed that the material is dispersed into the cytoplasm, while in AuMt2, the material is concentrated in the nuclear periphery.

8.
Artif Cells Nanomed Biotechnol ; 46(6): 1194-1206, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28826248

RESUMO

We synthesized silver nanoparticles using Rumex hymenosepalus root extract (Rh). Nanoparticles were subjected to a purification process and final product is a composite of Rh and silver nanoparticles (AgNPsC). Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to perform a microstructure study. Additionally, two fractions (RhA and RhB) were obtained from the original extract by filtration with tetrahydrofuran (THF); both fractions were analyzed using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and 2,2-diphenyl-1-picrylhydrazyl (DPPH); total polyphenol content was also determined. Separate inhibition tests for AgNPsC and RhA and RhB were applied to Gram-positive bacteria, Gram-negative bacteria, and yeast (Candida albicans) using the well diffusion method. Extract fractions were found to have inhibitory effects only over Gram-positive bacteria, and silver nanoparticles showed inhibitory effects over all the evaluated microorganisms. Cytotoxicity was evaluated using the tetrazolium dye (MTT) assay in mononuclear peripheral blood cells. In addition, we assessment AgNPsC in THP-1 monocyte cell line, using the cell viability estimation by trypan blue dye exclusion test (TB) and Live/Dead (LD) cell viability assays by confocal microscopy.


Assuntos
Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/química , Rumex/química , Prata/química , Furanos/química , Química Verde , Humanos , Leucócitos Mononucleares , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Raízes de Plantas/química , Propriedades de Superfície , Células THP-1
9.
Nanoscale Res Lett ; 10: 101, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25883540

RESUMO

We have synthesized silver nanoparticles in the non-polar phase of non-aqueous microemulsions. The nanocrystals have been grown by reducing silver ions in the microemulsion cylindrical micelles formed by the reducing agent (ethylene glycol). By a careful deposit of the microemulsion phase on a substrate, the micelles align in a hexagonal geometry, thus forming a 2D array of parallel strings of individual silver nanoparticles on the substrate. The microemulsions are the ternary system of anionic surfactant, non-polar solvent (isooctane), and solvent polar (ethylene glycol); the size of synthesized nanoparticles is about 7 nm and they are monodisperse. The study of the microstructure was realized by transmission electron microscopy, high-resolution technique transmission electron microscopy (HR-TEM), and Fourier processing using the software Digital Micrograph for the determination of the crystalline structure of the HR-TEM images of the nanocrystals; chemical composition was determined using the energy-dispersive X-ray spectroscopy. Addition technique polarizing light microscopy allowed the observation of the hexagonal phase of the system. This method of synthesis and self-alignment could be useful for the preparation of patterned materials at the nanometer scale.

10.
Nanoscale Res Lett ; 8(1): 318, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23841946

RESUMO

We have synthesized silver nanoparticles from silver nitrate solutions using extracts of Rumex hymenosepalus, a plant widely found in a large region in North America, as reducing agent. This plant is known to be rich in antioxidant molecules which we use as reducing agents. Silver nanoparticles grow in a single-step method, at room temperature, and with no addition of external energy. The nanoparticles have been characterized by ultraviolet-visible spectroscopy and transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. The nanoparticle diameters are in the range of 2 to 40 nm. High-resolution transmission electron microscopy and fast Fourier transform analysis show that two kinds of crystal structures are obtained: face-centered cubic and hexagonal.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 1): 011604, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867181

RESUMO

We have performed a dynamic light-scattering (DLS) investigation of the effect of a water-soluble polymer, polyethylene glycol (PEG), on the bending elastic modulus κ of surfactant membranes. The polymer, in concentrations ranging from 0 to 8 g/L (0 to 0.4 mM), was incorporated into the solvent of sponge phases of the sodium dodecyl sulfate (SDS)-hexanol-brine system. PEG adsorbs into the SDS membranes. The correlation functions of the polymer-doped sponge phases displayed a stretched-exponential decay, appropriately described by the Zilman-Granek (Z-G) theory for fluctuating membranes. The dynamics of the surfactant bilayers was slowed down by the addition of the polymer: Increasing PEG concentrations increase the DLS relaxation times. From the Z-G model we extracted the membrane-bending elastic modulus, as a function of polymer concentration, C(PEG) = κ increases with C(PEG), a behavior opposite to that expected from available models for the interaction between fluid membranes and adsorbing polymers. Our results suggest that the polymer penetrates to some extent the surfactant bilayers.


Assuntos
Física/métodos , Polietilenoglicóis/química , Polímeros/química , Adsorção , Álcoois/química , Algoritmos , Elasticidade , Luz , Espalhamento de Radiação , Dodecilsulfato de Sódio/química , Solventes/química , Tensoativos/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...