Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142745, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950741

RESUMO

Chemical coagulation has gained recognition as an effective technique to enhance the removal efficiency of pollutants in wastewater prior to their entry into a constructed wetland (CW) system. However, its potential impact on the chemical and microbial properties of soil and plant systems within CWs requires further research. This study investigated the impact of using ferric chloride (FeCl3) as a pre-treatment stage for dairy wastewater (DWW) on the chemical and microbial properties of water-soil-plant systems of replicated pilot-scale CWs, comparing them to CWs treating untreated DWW. CWs treating amended DWW had better performance than CWs treating raw DWW for all water quality parameters (COD, TSS, TP, and TN), ensuring compliance with the EU wastewater discharge directives. Soil properties remained mostly unaffected except for pH, calcium and phosphorus (P), which were lower in CWs treating amended DWW. As a result of lower nitrogen (N) and P loads, the plants in CWs receiving FeCl3-amended DWW had lower N and P contents than the plants of raw DWW CWs. However, the lower loads of P into amended DWW CWs did not limit the growth of Phragmites australis, which were able to accumulate trace elements higher than CWs receiving raw DWW. Alpha and Beta-diversity analysis revealed minor differences in community richness and composition between both treatments, with only 3.7% (34 genera) showed significant disparities. Overall, the application of chemical coagulation produced superior effluent quality without affecting the properties of soil and plant of CWs or altering the functioning of the microbial community.

2.
Sci Total Environ ; 948: 174509, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986697

RESUMO

Agri-environment and forest schemes can support landowners to conserve and enhance agricultural and forest ecosystems. The effectiveness of these schemes is often debated due to discrepancies that occur between the application of such measures and the delivery of Ecosystem Services (ES). We simulated the application of a suite of farmland and forest measures within a range of biophysical contexts in known High Nature Value landscapes across the Republic of Ireland. Three high resolution geospatial scenarios simulated the anticipated effects of the measures: i) a Baseline Scenario of current conditions, ii) an Enhanced Scenario simulated the application of measures, and iii) using the new 'Restoration Planner' freeware, an Enhanced + Connectivity Scenario simulated the application of additional targeted measures for ecosystem connectivity. Across all scenarios, we modelled and compared the responses of a range of ES including: habitat quality, carbon storage, production income and ecosystem connectivity. Multivariate analyses were used to ordinate and determine eight bundles of measures and their associated effect on ES and connectivity. These bundles were subsequently contextualised by examining unique landscape characteristics in which they occurred. The results show that measures applied under the Enhanced Scenario resulted in weak gains to carbon storage (2 %), strong gains to habitat quality (28 %), and weak losses to production income (-7 %) and ecosystem connectivity (-2 %). Similarities were observed under the Enhanced + Connectivity Scenario, though with comparably stronger gains to ecosystem connectivity (15 %). This study is the first to demonstrate the potential synergies and trade-offs to ES that can result from the integrated and targeted application of both farmland and forest measures within a variety of landscape characteristics.

3.
Sci Total Environ ; 876: 162605, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36906031

RESUMO

Intermittent sand filters (ISFs) are widely used in rural areas to treat domestic and dilute agricultural wastewater due to their simplicity, efficacy and relative low cost. However, filter clogging reduces their operational lifetime and sustainability. To reduce the potential of filter clogging, this study examined pre-treatment of dairy wastewater (DWW) by coagulation with ferric chloride (FeCl3) prior to treatment in replicated, pilot-scale ISFs. Over the study duration and at the end of the study, the extent of clogging across hybrid coagulation-ISFs was quantified, and the results were compared to ISFs treating raw DWW without a coagulation pre-treatment, but otherwise operated under the same conditions. During operation, ISFs receiving raw DWW recorded higher volumetric moisture content (θv) than ISFs treating pre-treated DWW, which indicated that biomass growth and clogging rate was higher in ISFs treating raw DWW, which were fully clogged after 280 days of operation. The hybrid coagulation-ISFs remained fully operational until the end of the study. Examination of the field-saturated hydraulic conductivity (Kfs) showed that ISFs treating raw DWW lost approximately 85 % of their infiltration capacity in the uppermost layer due to biomass build-up versus 40 % loss for hybrid coagulation-ISFs. Furthermore, loss on ignition (LOI) results indicated that conventional ISFs developed five times the organic matter (OM) in the uppermost layer compared to ISFs treating pre-treated DWW. Similar trends were observed for phosphorus, nitrogen and sulphur, where proportionally higher values were observed for raw DWW ISFs than pre-treated DWW ISFs, with values decreasing with depth. Scanning electron microscopy (SEM) showed a clogging biofilm layer on the surface of raw DWW ISFs, while pre-treated ISFs maintained distinguishable sand grains on the surface. Overall, hybrid coagulation-ISFs are likely to sustain infiltration capacity for a longer period than filters treating raw wastewater; therefore, requiring smaller surface area for treatment and minimal maintenance.

4.
J Environ Manage ; 329: 117008, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584514

RESUMO

Dissolved reactive phosphorus (DRP) loss from agricultural soils can negatively affect water quality. Shallow subsurface pathways can dominate P losses in grassland soils, especially in wetter months when waterlogging is common. This study investigated the processes controlling intra- and inter-event and seasonal DRP losses from poorly drained permanent grassland hillslope plots. Temporal flow related water samples were taken from surface runoff and subsurface (in-field pipe) discharge, analysed, and related to the likelihood of anaerobic conditions and redoximorphic species including nitrate (NO3-) over time. Subsurface drainage accounted for 89% of total losses. Simple linear regression and correlation matrices showed positive relationships between DRP and iron and soil moisture deficit; and negative relationships between these three factors and NO3- concentrations in drainage. These data indicate that waterlogging and low NO3- concentrations control the release of P in drainage, potentially via reductive dissolution. The relationship between DRP and metal release was less obvious in surface runoff, as nutrients gathered from P-rich topsoil camoflaged redox reactions. The data suggest a threshold in NO3- concentrations that could exacerbate P losses, even in low P soils. Knowledge of how nutrients interact with soil drainage throughout the year can be used to better time soil N and P inputs via, for example, fertiliser or grazing to avoid to excessive P loss that could harm water quality.


Assuntos
Óxidos , Fósforo , Fósforo/análise , Pradaria , Movimentos da Água , Agricultura , Solo , Ferro/análise
5.
Sci Total Environ ; 847: 157567, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882332

RESUMO

Constructed wetlands (CWs) are a cost-effective and sustainable treatment technology that may be used on farms to treat dairy wastewater (DWW). However, CWs require a large area for optimal treatment and have poor long-term phosphorus removal. To overcome these limitations, this study uses a novel, pilot-scale coagulation-sedimentation process prior to loading CWs with DWW. This hybrid system, which was operated on an Irish farm over an entire milking season, performed well at higher hydraulic loading rates than conventional CWs, and obtained removal efficiencies ≥99 % for all measured water quality parameters (chemical oxygen demand, total nitrogen and phosphorus, total suspended solids and turbidity), which complied with EU directives concerning urban wastewater treatment. Overall, the hybrid coagulation-CW is a promising technology that requires a smaller area than conventional CWs and minimal operator input, and produces high effluent quality.


Assuntos
Águas Residuárias , Áreas Alagadas , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
6.
J Environ Manage ; 289: 112498, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878703

RESUMO

This study presents a novel landscape classification map of the Republic of Ireland and is the first to identify broad landscape classes by incorporating physiographic and land cover data. The landscape classification responds to commitments to identify and classify the Irish landscape as a signatory to the European Landscape Convention. The methodology applied a series of clustering iterations to determine an objective multivariate classification of physiographic landscape units and land cover datasets. The classification results determined nine statistically significant landscape classes and the development of a landscape classification map at a national scale. A statistical breakdown of land cover area and diversity of each class was interpreted, and a comparison was extended using independent descriptive variables including farmland use intensity, elevation, and dominant soil type. Each class depicts unique spatial and composition characteristics, from coastal, lowland and elevated, to distinct and dominating land cover types, further explained by the descriptive variables. The significance of individual classes and success of the classification is discussed with particular reference to the wider applicability of the map. The transferability of the methodology to other existing physiographic maps and environmental datasets to generate new landscape classifications is also considered. This novel work facilitates the development of a strategic framework to efficiently monitor, compare and analyse ecological and other land use data that is spatially representative of the distribution and extent of land cover in the Irish countryside.


Assuntos
Meio Ambiente , Solo , Monitoramento Ambiental , Irlanda
7.
J Environ Manage ; 267: 110567, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364129

RESUMO

Land spreading of dairy soiled water (DSW) may result in pollution of ground and surface waters. Treatment of DSW through sludge-supernatant separation using chemical coagulants is a potential option to reduce the negative environmental impacts of DSW. The aims of this study were to (1) assess the effectiveness of three chemical coagulants - poly-aluminium chloride (PACl), ferric chloride (FeCl3) and alum - in improving effluent quality, and (2) assess the properties of the sludge that is generated as by-product from the process for its suitability for land application. Taking into consideration optimum doses to minimize pollutants (turbidity, chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), and E. coli), optimum mixing times and cost, FeCl3 was the best performing coagulant. Generated sludges had higher nutrient content and fewer E. coli than raw DSW, and did not display any evidence of phytotoxicity to the growth of Lolium perenne L. using germination tests. The study discussed the results in a sustainable farm management context, and suggested that the effluent (supernatant) from the treatments may be recycled to wash farm yards, saving water. In parallel, the sludge portion can be applied to amend soil properties with no adverse impacts on the grass growth, providing an agronomic value as an organic fertilizer, and reducing the risk of nutrient losses. This management approach could minimize the overall net cost compared to land application of raw DSW.


Assuntos
Cloreto de Alumínio , Solo , Compostos de Alúmen , Cloretos , Escherichia coli , Compostos Férricos , Eliminação de Resíduos Líquidos
8.
Sci Total Environ ; 556: 276-90, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26974575

RESUMO

Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants. A new GIS-based HSA Index is presented that improves the identification of HSAs at the sub-field scale by accounting for microtopographic controls. The Index is based on high resolution LiDAR data and a soil topographic index (STI) and also considers the hydrological disconnection of overland flow via topographic impediment from flow sinks. The HSA Index was applied to four intensive agricultural catchments (~7.5-12km(2)) with contrasting topography and soil types, and validated using rainfall-quickflow measurements during saturated winter storm events in 2009-2014. Total flow sink volume capacities ranged from 8298 to 59,584m(3) and caused 8.5-24.2% of overland-flow-generating-areas and 16.8-33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified 'breakthrough points' and 'delivery points' along surface runoff pathways as vulnerable points where diffuse pollutants could be transported between fields or delivered to the open drainage network, respectively. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips reduced potential costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5years respectively, which included LiDAR DEM acquisition costs. The HSA Index can be used as a hydrologically realistic transport component within a fully evolved sub-field scale CSA model, and can also be used to guide the implementation of 'treatment-train' mitigation strategies concurrent with sustainable agricultural intensification.

9.
J Contam Hydrol ; 182: 16-24, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26313127

RESUMO

Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of hydraulic parameters generated from hand texture data will be resultantly greater, and may lead to flawed predictions regarding the achievability of water policy targets. For this reason laboratory analysis, regardless of method, should be preferred to simple field assessments.


Assuntos
Monitoramento Ambiental/métodos , Solo/química , Agricultura , Silicatos de Alumínio , Argila , Água Subterrânea/química , Hidrologia/métodos , Irlanda , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA