Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Neurology ; 100(3): e275-e285, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36192174

RESUMO

BACKGROUND AND OBJECTIVES: To test the associations between the presynaptic growth-associated protein 43 (GAP-43), quantified in CSF, and biomarkers of Alzheimer disease (AD) pathophysiology, cross-sectionally and longitudinally. METHODS: In this retrospective study, GAP-43 was measured in participants from the AD Neuroimaging Initiative (ADNI) cohort using an in-house ELISA method, and levels were compared between groups, both cross-sectionally and longitudinally. Linear regression models tested the associations between biomarkers of AD (amyloid beta [Aß] and tau pathologies, neurodegeneration, and cognition) adjusted by age, sex, and diagnosis. Linear mixed-effect models evaluated how baseline GAP-43 predicts brain hypometabolism, atrophy, and cognitive decline over time. Cox proportional hazard regression models tested how GAP-43 levels and Aß status, at baseline, increased the risk of progression to AD dementia over time. RESULTS: This study included 786 participants from the ADNI cohort, which were further classified in cognitively unimpaired (CU) Aß-negative (nCU- = 197); CU Aß-positive (nCU+ = 55), mild cognitively impaired (MCI) Aß-negative (nMCI- = 228), MCI Aß-positive (nMCI+ = 193), and AD dementia Aß-positive (nAD = 113). CSF GAP-43 levels were increased in Aß-positive compared with Aß-negative participants, independent of the cognitive status. In Aß-positive participants, high baseline GAP-43 levels led to worse brain metabolic decline (p = 0.01), worse brain atrophy (p = 8.8 × 10-27), and worse MMSE scores (p = 0.03) over time, as compared with those with low GAP-43 levels. Similarly, Aß-positive participants with high baseline GAP-43 had the highest risk to convert to AD dementia (hazard ratio [HR = 8.56, 95% CI 4.94-14.80, p = 1.5 × 10-14]). Despite the significant association with Aß pathology (η2 Aß PET = 0.09, P Aß PET < 0.001), CSF total tau (tTau) and phosphorylated tau (pTau) had a larger effect size on GAP43 than Aß PET (η2 pTau-181 = 0.53, P pTau-181 < 0.001; η2 tTau = 0.59, P tTau < 0.001). DISCUSSION: High baseline levels of CSF GAP-43 are associated with progression in Aß-positive individuals, with a more aggressive neurodegenerative process, faster rate of cognitive decline, and increased risk of converting to dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteína GAP-43 , Estudos Retrospectivos , Proteínas tau , Disfunção Cognitiva/diagnóstico , Biomarcadores , Proteínas Amiloidogênicas , Atrofia , Tomografia por Emissão de Pósitrons/métodos , Progressão da Doença
2.
Alzheimers Res Ther ; 12(1): 168, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353563

RESUMO

BACKGROUND: Neurogranin (Ng) is a neuron-specific and postsynaptic protein that is abundantly expressed in the brain, particularly in the dendritic spine of the hippocampus and cerebral cortex. The enzymatic cleavage of Ng produces fragments that are released into cerebrospinal (CSF), which have been shown to be elevated in Alzheimer's disease (AD) patients and predict cognitive decline. Thus, quantification of distinctive cleavage products of Ng could elucidate different features of the disease. METHODS: In this study, we developed novel ultrasensitive single molecule array (Simoa) assays for measurement of full-length neurogranin (FL-Ng) and C-terminal neurogranin (CT-Ng) fragments in CSF. The Ng Simoa assays were evaluated in CSF samples from AD patients (N = 23), mild cognitive impairment due to AD (MCI-AD) (N = 18), and from neurological controls (N = 26). RESULTS: The intra-assay repeatability and inter-assay precision of the novel methods had coefficients of variation below 7% and 14%, respectively. CSF FL-Ng and CSF CT-Ng median concentrations were increased in AD patients (6.02 ng/L, P < 0.00001 and 452 ng/L, P = 0.00001, respectively) and in patients with MCI-AD (5.69 ng/L, P < 0.00001 and 566 ng/L, P < 0.00001) compared to neurological controls (0.644 ng/L and 145 ng/L). The median CSF ratio of CT-Ng/FL-Ng were decreased in AD patients (ratio = 101, P = 0.008) and in patients with MCI-AD (ratio = 115, P = 0.016) compared to neurological controls (ratio = 180). CSF of FL-Ng, CT-Ng, and ratio of CT-Ng/FL-Ng could each significantly differentiate AD patients from controls (FL-Ng, AUC = 0.907; CT-Ng, AUC = 0.913; CT-Ng/FL-Ng, AUC = 0.775) and patients with MCI-AD from controls (FL-Ng, AUC = 0.937; CT-Ng, AUC = 0.963; CT-Ng/FL-Ng, AUC = 0.785). CONCLUSIONS: Assessments of the FL-Ng and CT-Ng levels in CSF with the novel sensitive immunoassays provide a high separation of AD from controls, even in early phase of the disease. The novel Ng assays are robust and highly sensitive and may be valuable tools to study synaptic alteration in AD, as well as to monitor the effect on synaptic integrity of novel drug candidates in clinical trials.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Imunoensaio , Neurogranina , Fragmentos de Peptídeos , Proteínas tau
3.
Alzheimers Res Ther ; 11(1): 82, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521194

RESUMO

BACKGROUND: Increasing evidence implicates dysfunctional proteostasis and the involvement of the autophagic and endo-lysosomal system and the ubiquitin-proteasome system in neurodegenerative diseases. In Alzheimer's disease (AD), there is an accumulation of autophagic vacuoles within the neurons. In Parkinson's disease (PD), susceptibility has been linked to genes encoding proteins involved in autophagy and lysosomal function, as well as mutations causing lysosomal disorders. Furthermore, both diseases are characterized by the accumulation of protein aggregates. METHODS: Proteins associated with endocytosis, lysosomal function, and the ubiquitin-proteasome system were identified in the cerebrospinal fluid (CSF) and targeted by combining solid-phase extraction and parallel reaction monitoring mass spectrometry. In total, 50 peptides from 18 proteins were quantified in three cross-sectional cohorts including AD (N = 61), PD (N = 21), prodromal AD (N = 10), stable mild cognitive impairment (N = 15), and controls (N = 68). RESULTS: A pilot study, including subjects selected based on their AD CSF core biomarker concentrations, showed increased concentrations of several targeted proteins in subjects with core biomarker levels indicating AD pathology compared to controls. Next, in a clinically characterized cohort, lower concentrations in CSF of proteins in PD were found compared to subjects with prodromal AD. Further investigation in an additional clinical study again revealed lower concentrations in CSF of proteins in PD compared to controls and AD. CONCLUSION: In summary, significantly different peptide CSF concentrations were identified from proteins AP2B1, C9, CTSB, CTSF, GM2A, LAMP1, LAMP2, TCN2, and ubiquitin. Proteins found to have altered concentrations in more than one study were AP2B1, CTSB, CTSF, GM2A, LAMP2, and ubiquitin. Interestingly, given the genetic implication of lysosomal function in PD, we did identify the CSF concentrations of CTSB, CTSF, GM2A, and LAMP2 to be altered. However, we also found differences in proteins associated with endocytosis (AP2B1) and the ubiquitin-proteasome system (ubiquitin). No difference in any peptide CSF concentration was found in clinically characterized subjects with AD compared to controls. In conclusion, CSF analyses of subjects with PD suggest a general lysosomal dysfunction, which resonates well with recent genetic findings, while such changes are minor or absent in AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Autofagia , Endossomos/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/líquido cefalorraquidiano , Complexo de Endopeptidases do Proteassoma/líquido cefalorraquidiano , Ubiquitina/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Estudos Transversais , Endocitose , Humanos , Pessoa de Meia-Idade
4.
J Proteome Res ; 18(5): 2109-2120, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943367

RESUMO

Parkinson's disease (PD) is characterized by intraneuronal inclusions of aggregated α-synuclein protein (so-called Lewy bodies) in distinct brain regions. Multiple posttranslational modifications may affect the structure and function of α-synuclein. Mass spectrometry-based analysis may be useful for the characterization and quantitation of α-synuclein forms, but has proven challenging, mainly due to the insolubility of Lewy bodies in aqueous buffer. In the present study, we developed a novel method by combining differential solubilization with immunoprecipitation and targeted proteomics using liquid chromatography and tandem mass spectrometry. Brain tissue homogenization and sample preparation were modified to facilitate analysis of soluble, detergent-soluble, and detergent-insoluble protein fractions (Lewy body-enriched). The method was used to compare α-synuclein forms from cingulate cortex (affected) and occipital cortex (unaffected) in two study sets of PD patients and controls. We identified ∼20 modified α-synuclein variants, including species with N-terminal acetylation and C-terminal truncations at amino acids 103 and 119. The levels of α-synuclein forms Ac-α-syn1-6, α-syn13-21, α-syn35-43, α-syn46-58, α-syn61-80, and α-syn81-96 except α-syn103-119 were significantly increased in PD cingulate region compared to controls in the Lewy body-enriched α-synuclein fraction. In the soluble fraction, only Ac-α-syn1-6 was significantly increased in PD compared to controls. None of the detected α-synuclein variants were Lewy body-specific, but acetylated forms should be examined further as potential biomarkers for abnormal α-synuclein accumulation.


Assuntos
Giro do Cíngulo/química , Corpos de Lewy/química , Doença de Parkinson/metabolismo , alfa-Sinucleína/química , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Autopsia , Isótopos de Carbono , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Giro do Cíngulo/patologia , Humanos , Marcação por Isótopo , Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Isótopos de Nitrogênio , Lobo Occipital/química , Doença de Parkinson/patologia , Solubilidade , Espectrometria de Massas em Tandem , alfa-Sinucleína/metabolismo
6.
Neuroscience ; 420: 136-144, 2019 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30528858

RESUMO

Synaptic degeneration is central in Alzheimer's disease (AD) pathogenesis and biomarkers to monitor this pathophysiology in living patients are warranted. We developed a novel sandwich enzyme-linked immunosorbent assay (ELISA) for the measurement of the pre-synaptic protein SNAP-25 in cerebrospinal fluid (CSF) and evaluated it as a biomarker for AD. CSF samples included a pilot study consisting of AD (N = 26) and controls (N = 26), and two independent clinical cohorts of AD patients and controls. Cohort I included CSF samples from patients with dementia due to AD (N = 17), patients with mild cognitive impairment (MCI) due to AD (N = 5) and controls (N = 17), and cohort II CSF samples from patients with dementia due to AD (N = 24), patients with MCI due to AD (N = 18) and controls (N = 36). CSF levels of SNAP-25 were significantly increased in patients with AD compared with controls (P ≤ 0.00001). In both clinical cohorts, CSF levels of SNAP-25 were significantly increased in patients with MCI due to AD (P < 0.0001). SNAP-25 could differentiate dementia due to AD (N = 41) from controls (N = 52) and MCI due to AD (N = 23) from controls (N = 52) with areas under the curve of 0.967 (P < 0.0001) and 0.948 (P < 0.0001), respectively. CSF SNAP-25 is a promising AD biomarker that differentiates AD patients in different clinical stages of the disease from controls with excellent diagnostic accuracy. Future studies should address the specificity of the CSF SNAP-25 against common differential diagnoses to AD, as well as how the biomarker changes in response to treatment with disease-modifying drug candidates.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Ensaio de Imunoadsorção Enzimática/métodos , Proteína 25 Associada a Sinaptossoma/líquido cefalorraquidiano , Idoso , Feminino , Humanos , Masculino , Sensibilidade e Especificidade
7.
Neurochem Int ; 121: 38-49, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30342961

RESUMO

Synaptic function and neurotransmitter release are regulated by specific proteins. Cortical neuronal differentiation of human induced pluripotent stem cells (hiPSC) provides an experimental model to obtain more information about synaptic development and physiology in vitro. In this study, expression and secretion of the synaptic proteins, neurogranin (NRGN), growth-associated protein-43 (GAP-43), synaptosomal-associated protein-25 (SNAP-25) and synaptotagmin-1 (SYT-1) were analyzed during cortical neuronal differentiation. Protein levels were measured in cells, modeling fetal cortical development and in cell-conditioned media which was used as a model of cerebrospinal fluid (CSF), respectively. Human iPSC-derived cortical neurons were maintained over a period of at least 150 days, which encompasses the different stages of neuronal development. The differentiation was divided into the following stages: hiPSC, neuro-progenitors, immature and mature cortical neurons. We show that NRGN was first expressed and secreted by neuro-progenitors while the maximum was reached in mature cortical neurons. GAP-43 was expressed and secreted first by neuro-progenitors and its expression increased markedly in immature cortical neurons. SYT-1 was expressed and secreted already by hiPSC but its expression and secretion peaked in mature neurons. SNAP-25 was first detected in neuro-progenitors and the expression and secretion increased gradually during neuronal stages reaching a maximum in mature neurons. The sensitive analytical techniques used to monitor the secretion of these synaptic proteins during cortical development make these data unique, since the secretion of these synaptic proteins has not been investigated before in such experimental models. The secretory profile of synaptic proteins, together with low release of intracellular content, implies that mature neurons actively secrete these synaptic proteins that previously have been associated with neurodegenerative disorders, including Alzheimer's disease. These data support further studies of human neuronal and synaptic development in vitro, and would potentially shed light on the mechanisms underlying altered concentrations of the proteins in bio-fluids in neurodegenerative diseases.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/metabolismo , Proteínas de Membrana/biossíntese , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Linhagem Celular , Células Cultivadas , Córtex Cerebral/citologia , Expressão Gênica , Humanos , Proteínas de Membrana/genética , Neurogranina/biossíntese , Neurogranina/genética , Proteína 25 Associada a Sinaptossoma/biossíntese , Proteína 25 Associada a Sinaptossoma/genética , Sinaptotagmina I/biossíntese , Sinaptotagmina I/genética
8.
Parkinsonism Relat Disord ; 49: 4-8, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29409704

RESUMO

INTRODUCTION: Cerebrospinal fluid (CSF) total α-synuclein is considered a potential biomarker for Parkinson's disease (PD), but little is known about the evolution of this marker during the course of the disease. Our objective was to investigate whether CSF total α-synuclein concentrations change over time and are associated with motor and cognitive function in PD. METHODS: CSF total α-synuclein concentrations were quantified in 56 longitudinally followed PD patients, 27 of whom provided CSF repeatedly 2 and/or 4 years later. Another 18 subjects were included as controls. The samples were analyzed using two independent, validated ELISA methods: our recently developed and validated in-house ELISA and a commercial kit from BioLegend. RESULTS: CSF total α-synuclein levels did not distinguish PD patients from controls, displayed no substantial changes during a period of up to 4 years, and did not predict subsequent motor or cognitive decline. These findings were consistent for both analytical methods. CONCLUSION: Our findings do not support the clinical utility of total α-synuclein as a single diagnostic or prognostic biomarker in PD.


Assuntos
Disfunção Cognitiva/líquido cefalorraquidiano , Progressão da Doença , Doença de Parkinson/líquido cefalorraquidiano , alfa-Sinucleína/líquido cefalorraquidiano , Idoso , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia
9.
Proteomics Clin Appl ; 11(11-12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28972305

RESUMO

PURPOSE: Dysfunctional proteostasis, with decreased protein degradation and an accumulation of ubiquitin into aggregated protein inclusions, is a feature of neurodegenerative diseases. Identifying new potential biomarkers in cerebrospinal fluid (CSF) reflecting this process could contribute important information on pathophysiology. EXPERIMENTAL DESIGN: A developed method combining SPE and PRM-MS is employed to monitor the concentration of ubiquitin in CSF from subjects with Alzheimer's disease (AD), Parkinson's disease (PD), and progressive supranuclear palsy (PSP). Four independent cross-sectional studies are conducted, studies 1-4, including controls (n = 86) and participants with AD (n = 60), PD (n = 15), and PSP (n = 11). RESULTS: The method shows a repeatability and intermediate precision not exceeding 6.1 and 7.9%, respectively. The determined LOD is 0.1 nm and the LOQ range between 0.625 and 80 nm. The CSF ubiquitin concentration is 1.2-1.5-fold higher in AD patients compared with controls in the three independent AD-control studies (Study 1, p < 0.001; Study 2, p < 0.001; and Study 3, p = 0.003). In the fourth study, there is no difference in PD or PSP, compared to controls. CONCLUSION AND CLINICAL RELEVANCE: CSF ubiquitin may reflect dysfunctional proteostasis in AD. The described method can be used for further exploration of ubiquitin as a potential biomarker in neurodegenerative diseases.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Espectrometria de Massas/métodos , Transtornos Parkinsonianos/líquido cefalorraquidiano , Ubiquitina/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Clin Chem Lab Med ; 55(2): 254-260, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474841

RESUMO

BACKGROUND: Abnormal α-synuclein aggregation and deposition is the pathological hallmark of Parkinson's disease (PD) and dementia with Lewy bodies (DLB), but is also found in Alzheimer disease (AD). Therefore, there is a gaining interest in α-synuclein in cerebrospinal fluid (CSF) as potential biomarker for these neurodegenerative diseases. To broaden the available choices of α-synuclein measurement in CSF, we developed and validated a new assay for detecting total α-synuclein. METHODS: This novel ELISA uses commercially available antibodies and is based on electrochemiluminescence technology. The assay protocol is straightforward, with short and simple incubation steps, and requires only small amounts of CSF. We validated this assay for precision, parallelism, dilution linearity, specificity, and spike recovery. We further compared it to the newly validated α-synuclein assay from BioLegend by analyzing a set of 50 CSF samples with both assays. RESULTS: The new assay quantifies α-synuclein in CSF with a lower limit of detection of 36.3 pg/mL and shows no cross-reactivity with human ß- and γ-synuclein. Results of dilution linearity, parallelism, spike recovery, and precision classify this assay as well suited for α-synuclein detection in human CSF samples. CONCLUSIONS: We present a novel assay based on freely available components to quantify total α-synuclein in CSF as an additional method for α-synuclein as a biomarker in neurodegenerative diseases. The assay convinces with its simple and convenient protocol paired with high sensitivity.


Assuntos
Técnicas Eletroquímicas , Ensaio de Imunoadsorção Enzimática , Medições Luminescentes , alfa-Sinucleína/líquido cefalorraquidiano , Biomarcadores/análise , Humanos
11.
Alzheimers Res Ther ; 8(1): 41, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27716408

RESUMO

BACKGROUND: Synaptic degeneration is a central pathogenic event in Alzheimer's disease that occurs early during the course of disease and correlates with cognitive symptoms. The pre-synaptic vesicle protein synaptotagmin-1 appears to be essential for the maintenance of an intact synaptic transmission and cognitive function. Synaptotagmin-1 in cerebrospinal fluid is a candidate Alzheimer biomarker for synaptic dysfunction that also may correlate with cognitive decline. METHODS: In this study, a novel mass spectrometry-based assay for measurement of cerebrospinal fluid synaptotagmin-1 was developed, and was evaluated in two independent sample sets of patients and controls. Sample set I included cerebrospinal fluid samples from patients with dementia due to Alzheimer's disease (N = 17, age 52-86 years), patients with mild cognitive impairment due to Alzheimer's disease (N = 5, age 62-88 years), and controls (N = 17, age 41-82 years). Sample set II included cerebrospinal fluid samples from patients with dementia due to Alzheimer's disease (N = 24, age 52-84 years), patients with mild cognitive impairment due to Alzheimer's disease (N = 18, age 58-83 years), and controls (N = 36, age 43-80 years). RESULTS: The reproducibility of the novel method showed coefficients of variation of the measured synaptotagmin-1 peptide 215-223 (VPYSELGGK) and peptide 238-245 (HDIIGEFK) of 14 % or below. In both investigated sample sets, the CSF levels of synaptotagmin-1 were significantly increased in patients with dementia due to Alzheimer's disease (P ≤ 0.0001) and in patients with mild cognitive impairment due to Alzheimer's disease (P < 0.001). In addition, in sample set I the synaptotagmin-1 level was significantly higher in patients with mild cognitive impairment due to Alzheimer's disease compared with patients with dementia due to Alzheimer's disease (P ≤ 0.05). CONCLUSIONS: Cerebrospinal fluid synaptotagmin-1 is a promising biomarker to monitor synaptic dysfunction and degeneration in Alzheimer's disease that may be useful for clinical diagnosis, to monitor effect on synaptic integrity by novel drug candidates, and to explore pathophysiology directly in patients with Alzheimer's disease.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Sinaptotagmina I/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Transtornos Cognitivos/etiologia , Demência/etiologia , Feminino , Humanos , Imunoprecipitação , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Peptídeos/líquido cefalorraquidiano , Escalas de Graduação Psiquiátrica , Curva ROC , Proteínas tau/líquido cefalorraquidiano
12.
Dement Geriatr Cogn Dis Extra ; 6(2): 283-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504117

RESUMO

BACKGROUND: Dysfunctions of the ubiquitin proteasome system (UPS), including the highly abundant neuronal enzyme ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), and autophagy-related changes (lysosomal degradation) are implicated in several neurodegenerative disorders including Alzheimer's disease (AD). METHOD: This study evaluated cerebrospinal fluid (CSF) levels of UCH-L1, protein deglycase (DJ-1), neuron-specific enolase (NSE), and tau phosphorylated at threonine 231 (P-tau231) in two independent patient and control cohorts. Cohort 1 included CSF samples from subjects having an AD biomarker profile (n = 10) or a control biomarker profile (n = 31), while cohort 2 was a monocenter clinical study including patients with AD (n = 32), mild cognitive impairment (n = 13), other dementias (n = 15), as well as cognitively healthy controls (n = 20). RESULTS: UCH-L1 and P-tau231 were elevated in AD patients compared to controls in both cohorts. CSF levels of DJ-1 and NSE were unchanged in the AD group, whereas they were decreased in the group of other dementia compared to controls in the clinical study. CONCLUSION: Our main findings support that the UPS pathway may be impaired in AD, and UCH-L1 may serve as an additional CSF biomarker for AD.

13.
Lancet Neurol ; 15(7): 673-684, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27068280

RESUMO

BACKGROUND: Alzheimer's disease biomarkers are important for early diagnosis in routine clinical practice and research. Three core CSF biomarkers for the diagnosis of Alzheimer's disease (Aß42, T-tau, and P-tau) have been assessed in numerous studies, and several other Alzheimer's disease markers are emerging in the literature. However, there have been no comprehensive meta-analyses of their diagnostic performance. We systematically reviewed the literature for 15 biomarkers in both CSF and blood to assess which of these were most altered in Alzheimer's disease. METHODS: In this systematic review and meta-analysis, we screened PubMed and Web of Science for articles published between July 1, 1984, and June 30, 2014, about CSF and blood biomarkers reflecting neurodegeneration (T-tau, NFL, NSE, VLP-1, and HFABP), APP metabolism (Aß42, Aß40, Aß38, sAPPα, and sAPPß), tangle pathology (P-tau), blood-brain-barrier function (albumin ratio), and glial activation (YKL-40, MCP-1, and GFAP). Data were taken from cross-sectional cohort studies as well as from baseline measurements in longitudinal studies with clinical follow-up. Articles were excluded if they did not contain a cohort with Alzheimer's disease and a control cohort, or a cohort with mild cognitive impairment due to Alzheimer's disease and a stable mild cognitive impairment cohort. Data were extracted by ten authors and checked by two for accuracy. For quality assessment, modified QUADAS criteria were used. Biomarker performance was rated by random-effects meta-analysis based on the ratio between biomarker concentration in patients with Alzheimer's disease and controls (fold change) or the ratio between biomarker concentration in those with mild cognitive impariment due to Alzheimer's disease and those with stable mild cognitive impairment who had a follow-up time of at least 2 years and no further cognitive decline. FINDINGS: Of 4521 records identified from PubMed and 624 from Web of Science, 231 articles comprising 15 699 patients with Alzheimer's disease and 13 018 controls were included in this analysis. The core biomarkers differentiated Alzheimer's disease from controls with good performance: CSF T-tau (average ratio 2·54, 95% CI 2·44-2·64, p<0·0001), P-tau (1·88, 1·79-1·97, p<0·0001), and Aß42 (0·56, 0·55-0·58, p<0·0001). Differentiation between cohorts with mild cognitive impairment due to Alzheimer's disease and those with stable mild cognitive impairment was also strong (average ratio 0·67 for CSF Aß42, 1·72 for P-tau, and 1·76 for T-tau). Furthermore, CSF NFL (2·35, 1·90-2·91, p<0·0001) and plasma T-tau (1·95, 1·12-3·38, p=0·02) had large effect sizes when differentiating between controls and patients with Alzheimer's disease, whereas those of CSF NSE, VLP-1, HFABP, and YKL-40 were moderate (average ratios 1·28-1·47). Other assessed biomarkers had only marginal effect sizes or did not differentiate between control and patient samples. INTERPRETATION: The core CSF biomarkers of neurodegeneration (T-tau, P-tau, and Aß42), CSF NFL, and plasma T-tau were strongly associated with Alzheimer's disease and the core biomarkers were strongly associated with mild cognitive impairment due to Alzheimer's disease. Emerging CSF biomarkers NSE, VLP-1, HFABP, and YKL-40 were moderately associated with Alzheimer's disease, whereas plasma Aß42 and Aß40 were not. Due to their consistency, T-tau, P-tau, Aß42, and NFL in CSF should be used in clinical practice and clinical research. FUNDING: Swedish Research Council, Swedish State Support for Clinical Research, Alzheimer's Association, Knut and Alice Wallenberg Foundation, Torsten Söderberg Foundation, Alzheimer Foundation (Sweden), European Research Council, and Biomedical Research Forum.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Humanos
14.
Clin Proteomics ; 13: 4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26924951

RESUMO

BACKGROUND: Alzheimer's disease is the most common form of dementia. An increasing body of evidence suggests that endo-lysosomal dysfunction is a pathogenic mechanism of Alzheimer's disease. Thus there is a potential for proteins involved in the normal function of endo-lysosomal vesicles to act as biomarkers of disease. Herein we focused on the lysosomal protein LAMP2 that is involved in chaperone mediated autophagy. RESULTS: Using a combination of immunoprecipitation, digestion and nano-liquid chromatography tandem mass spectrometry we targeted and identified six tryptic LAMP2 peptides in human cerebrospinal fluid. Employing the identified proteotypic tryptic peptides a hybrid immunoprecipitation high resolution parallel reaction monitoring mass spectrometric method was developed for the relative quantitation of LAMP2. The method was evaluated in a number of experiments which defined the overall methodological as well as the analytical micro-liquid chromatography mass spectrometric intra- and inter-day variability. We identified an overall methodological peptide dependent intra-day variability of 8-16 %. The inter-day experiments showed similar results. The analytical contribution to the variation was minor with a coefficient of variation of 0.5-2.1 %, depending on the peptide. Using the developed method, with defined and limited variability, we report increased cerebrospinal fluid levels of three LAMP2 peptides in Alzheimer's disease subjects (n = 14), as compared to non-Alzheimer's disease controls (n = 14). CONCLUSION: Altered LAMP2 levels in cerebrospinal fluid may indicate endo-lysosomal dysfunction in Alzheimer's disease. However, further studies in larger cohorts comprised of well-defined patient materials are required. We here present a tool which can be used for exploring the relevance of the level of LAMP2 as a potential measure of lysosomal dysfunction in Alzheimer's disease or other neurodegenerative diseases.

15.
Mov Disord ; 31(6): 898-905, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26878815

RESUMO

OBJECTIVE: The purpose of this study was to investigate whether cerebrospinal fluid (CSF) levels of tau, phosphorylated tau, ß-amyloid42 , α-synuclein, neurofilament light, and YKL-40 change over time and if changes correlate with motor progression and/or cognitive decline in patients with PD and controls. METHODS: We included 63 patients with PD (nondemented) and 21 neurologically healthy controls from the prospective and longitudinal Swedish BioFINDER study, all of whom had clinical assessments and lumbar punctures at baseline and after 2 years. RESULTS: CSF tau levels correlated strongly with α-synuclein. The levels of CSF α-synuclein, tau, phosphorylated tau, neurofilament light, and YKL-40, but not ß-amyloid42 , increased in CSF over 2 years in PD. No changes were seen in the control group. Studying patients with a short disease duration ( ≤ 5 years) and patients with a long disease duration ( > 5 years) separately, α-synuclein and tau only increased in the PD group with long disease duration. In the PD group, an increase in phosphorylated tau over 2 years correlated with faster motor progression and faster cognitive decline. An increase in YKL-40 over 2 years correlated with faster cognitive decline. CONCLUSION: CSF biomarkers reflecting Lewy body pathology and neurodegeneration (α-synuclein), neuronal degeneration (tau, phosphorylated tau, and neurofilament light), and inflammation (YKL-40) increase significantly over 2 years in PD. CSF levels of α-synuclein and tau correlate and remain stable in the early symptomatic phase of PD but increase in the later phase. We hypothesize that CSF α-synuclein levels might increase as a result of more intense neurodegeneration in PD with long disease duration. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteína 1 Semelhante à Quitinase-3/líquido cefalorraquidiano , Progressão da Doença , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , alfa-Sinucleína/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
16.
Mult Scler ; 22(12): 1587-1595, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26754805

RESUMO

BACKGROUND: Microglia-mediated proteolysis of the triggering receptor expressed on myeloid cells-2 (TREM-2) produces soluble TREM-2 (sTREM-2) that can be measured in cerebrospinal fluid (CSF) samples. Loss-of-function mutations in TREM2 or in the gene encoding its adaptor protein cause the rare Nasu-Hakola disease (NHD). Multiple sclerosis (MS) is an autoimmune disease that in common with NHD is characterized by demyelination and microglial activation. OBJECTIVE: To investigate the potential utility of sTREM-2 as a biomarker for MS and to follow treatment effects. METHODS: sTREM-2 was analyzed in CSF samples from subjects with MS (N = 59); relapsing-remitting MS (RRMS) (N = 36), secondary progressive MS (SPMS) (N = 20) and primary progressive MS (PPMS) (N = 3), and controls (N = 27). CSF levels of sTREM-2 were also assessed before and after treatment of patients with natalizumab or mitoxantrone. RESULTS: CSF levels of sTREM-2 were significantly increased in patients with RRMS, SPMS, and PPMS compared with controls. After natalizumab treatment, the levels of sTREM-2 were normalized to control levels. The levels of sTREM-2 were also reduced after mitoxantrone treatment. CONCLUSION: Increased CSF levels of sTREM-2, a new marker of microglial activation, in MS and normalization upon treatment with either natalizumab or mitoxantrone support a role for microglial activation in active MS.


Assuntos
Fatores Imunológicos/farmacologia , Glicoproteínas de Membrana/líquido cefalorraquidiano , Glicoproteínas de Membrana/efeitos dos fármacos , Mitoxantrona/farmacologia , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Natalizumab/farmacologia , Receptores Imunológicos/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Adulto , Biomarcadores/líquido cefalorraquidiano , Feminino , Seguimentos , Humanos , Fatores Imunológicos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Mitoxantrona/administração & dosagem , Natalizumab/administração & dosagem , Inibidores da Topoisomerase II/administração & dosagem
17.
Mol Neurodegener ; 11: 3, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26754172

RESUMO

BACKGROUND: The discovery that heterozygous missense mutations in the gene encoding triggering receptor expressed on myeloid cells 2 (TREM2) are risk factors for Alzheimer's disease (AD), with only the apolipoprotein E (APOE) ε4 gene allele conferring a higher risk, has led to increased interest in immune biology in the brain. TREM2 is expressed on microglia, the resident immune cells of the brain and has been linked to phagocytotic clearance of amyloid ß (Aß) plaques. Soluble TREM2 (sTREM2) has previously been measured in cerebrospinal fluid (CSF) by ELISA but in our hands commercial kits have proved unreliable, suggesting that other methods may be required. We developed a mass spectrometry method using selected reaction monitoring for the presence of a TREM2 peptide, which can be used to quantify levels of sTREM2 in CSF. FINDINGS: We examined CSF samples from memory clinics in Sweden and the UK. For all samples the following were available: clinical diagnosis, age, sex, and measurements of the CSF AD biomarkers Aß42, T-tau and P-tau181. AD patients (n = 37) all met biomarker (IWG2) criteria for AD. Control individuals (n = 22) were cognitively normal without evidence for AD in CSF. We found significantly higher sTREM2 concentration in AD compared to control CSF. There were significant correlations between CSF sTREM2 and T-tau as well as P-tau181. CSF sTREM2 increase in AD was replicated in a second, independent cohort consisting of 24 AD patients and 16 healthy volunteers. CONCLUSION: CSF concentrations of sTREM2 are higher in AD than in controls, and correlate with markers of neurodegeneration. CSF sTREM2 may be used to quantify glial activation in AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Glicoproteínas de Membrana/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/genética , Apolipoproteína E4/líquido cefalorraquidiano , Apolipoproteína E4/genética , Biomarcadores/análise , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placa Amiloide/líquido cefalorraquidiano , Placa Amiloide/genética , Receptores Imunológicos , Fatores de Risco , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/genética
18.
J Cereb Blood Flow Metab ; 36(1): 114-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26174331

RESUMO

There is a need for increased nosological knowledge to enable rational trials in Alzheimer's disease (AD) and related disorders. The ongoing Gothenburg mild cognitive impairment (MCI) study is an attempt to conduct longitudinal in-depth phenotyping of patients with different forms and degrees of cognitive impairment using neuropsychological, neuroimaging, and neurochemical tools. Particular attention is paid to the interplay between AD and subcortical vascular disease, the latter representing a disease entity that may cause or contribute to cognitive impairment with an effect size that may be comparable to AD. Of 664 patients enrolled between 1999 and 2013, 195 were diagnosed with subjective cognitive impairment (SCI), 274 with mild cognitive impairment (MCI), and 195 with dementia, at baseline. Of the 195 (29%) patients with dementia at baseline, 81 (42%) had AD, 27 (14%) SVD, 41 (21%) mixed type dementia (=AD + SVD = MixD), and 46 (23%) other etiologies. After 6 years, 292 SCI/MCI patients were eligible for follow-up. Of these 292, 69 (24%) had converted to dementia (29 (42%) AD, 16 (23%) SVD, 15 (22%) MixD, 9 (13%) other etiologies). The study has shown that it is possible to identify not only AD but also incipient and manifest MixD/SVD in a memory clinic setting. These conditions should be taken into account in clinical trials.


Assuntos
Doença de Alzheimer/diagnóstico , Estudos Clínicos como Assunto/métodos , Demência Vascular/diagnóstico , Projetos de Pesquisa , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/etiologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Demência Vascular/epidemiologia , Demência Vascular/etiologia , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Substância Branca/patologia
19.
J Cereb Blood Flow Metab ; 36(1): 95-113, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26219595

RESUMO

The ability to discriminate between Alzheimer's disease (AD), subcortical vascular disease, and other cognitive disorders is crucial for diagnostic purposes and clinical trial outcomes. Patients with primarily subcortical vascular disease are unlikely to benefit from treatments targeting the AD pathogenic mechanisms and vice versa. The Gothenburg mild cognitive impairment (MCI) and dementia studies are prospective, observational, single-center cohort studies suitable for both cross-sectional and longitudinal analysis that outline the cognitive profiles and biomarker characteristics of patients with AD, subcortical vascular disease, and other cognitive disorders. The studies, the first of which started in 1987, comprise inpatients with manifest dementia and patients seeking care for cognitive disorders at an outpatient memory clinic. This article gives an overview of the major published papers (neuropsychological, imaging/physiology, and neurochemical) of the studies including the ongoing Gothenburg MCI study. The main findings suggest that subcortical vascular disease with or without dementia exhibit a characteristic neuropsychological pattern of mental slowness and executive dysfunction and neurochemical deviations typical of white matter changes and disturbed blood-brain barrier function. Our findings may contribute to better healthcare for this underrecognized group of patients. The Gothenburg MCI study has also published papers on multimodal prediction of dementia, and cognitive reserve.


Assuntos
Doença de Alzheimer/diagnóstico , Estudos Clínicos como Assunto/métodos , Demência Vascular/diagnóstico , Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Biomarcadores/sangue , Ensaios Clínicos como Assunto/métodos , Demência Vascular/sangue , Demência Vascular/patologia , Humanos , Imageamento por Ressonância Magnética , Estudos Observacionais como Assunto/métodos , Projetos de Pesquisa
20.
JAMA Neurol ; 72(10): 1175-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26258692

RESUMO

IMPORTANCE: Alterations in cerebrospinal fluid (CSF) have been found in Parkinson disease (PD) and in PD dementia (PDD), but the prognostic importance of such changes is not well known. In vivo biomarkers for disease processes in PD are important for future development of disease-modifying therapies. OBJECTIVE: To assess the diagnostic and prognostic value of a panel of CSF biomarkers in patients with early PD and related disorders. DESIGN, SETTING, AND PARTICIPANTS: Regional population-based, prospective cohort study of idiopathic parkinsonism that included patients diagnosed between January 1, 2004, and April 30, 2009, by a movement disorder team at a university hospital that represented the only neurology clinic in the region. Participants were 128 nondemented patients with new-onset parkinsonism (104 with PD, 11 with multiple system atrophy, and 13 with progressive supranuclear palsy) who were followed up for 5 to 9 years. At baseline, CSF from 30 healthy control participants was obtained for comparison. MAIN OUTCOMES AND MEASURES: Cerebrospinal fluid concentrations of neurofilament light chain protein, Aß1-42, total tau, phosphorylated tau, α-synuclein, and heart fatty acid-binding protein were quantified by 2 blinded measurements (at baseline and after 1 year). Follow-up included an extensive neuropsychological assessment. As PD outcome variables, mild cognitive impairment and incident PDD were diagnosed based on published criteria. RESULTS: Among the 128 study participants, the 104 patients with early PD had a different CSF pattern compared with the 13 patients with progressive supranuclear palsy (baseline area under the receiver operating characteristic curve, 0.87; P < .0001) and the 30 control participants (baseline area under the receiver operating characteristic curve, 0.69; P = .0021). A CSF biomarker pattern associated with the development of PDD was observed. In PD, high neurofilament light chain protein, low Aß1-42, and high heart fatty acid-binding protein at baseline were related to future PDD as analyzed by Cox proportional hazards regression models. Combined, these early biomarkers predicted PDD with high accuracy (hazard ratio, 11.8; 95% CI, 3.3-42.1; P = .0001) after adjusting for possible confounders. CONCLUSIONS AND RELEVANCE: The analyzed CSF biomarkers have potential usefulness as a diagnostic tool in patients with parkinsonism. In PD, high neurofilament light chain protein, low Aß1-42, and high heart fatty acid-binding protein were related to future PDD, providing new insights into the etiology of PDD.


Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Demência/etiologia , Diagnóstico Precoce , Doença de Parkinson/complicações , Fragmentos de Peptídeos/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/diagnóstico , Estudos Prospectivos , Risco , Proteínas tau/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...