Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Macromol Biosci ; : e2400149, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819531

RESUMO

In recent years, multifunctional nanocarriers that provide simultaneous drug delivery and imaging have attracted enormous attention, especially in cancer treatment. In this research, a biocompatible fluorescent multifunctional nanocarrier is designed for the co-delivery of capsaicin (CPS) and nitrogen-doped graphene quantum dots (N-GQDs) using the pH sensitive amphiphilic block copolymer (poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone), PEtOx-b-PCL). The effects of the critical formulation parameters (the amount of copolymer, the concentration of poly(vinyl alcohol) (PVA) as a stabilizing agent in the inner aqueous phase, and volume of the inner phase) are evaluated to achieve optimal nanoparticle (NP) properties using Central Composite Design. The optimized NPs demonstrated a desirable size distribution (167.8 ± 1.4 nm) with a negative surface charge (-19.9 ± 0.4) and a suitable loading capacity for CPS (70.80 ± 0.05%). The CPS & N-GQD NPs are found to have remarkable toxicity on human breast adenocarcinoma cell line (MCF-7). The solid fluorescent signal is acquired from cells containing multifunctional NPs, according to the confocal microscope imaging results, confirming the significant cellular uptake. This research illustrates the enormous potential for cellular imaging and enhanced cancer therapy offered by multifunctional nanocarriers that combine drug substances with the novel fluorescent agents.

2.
Braz. J. Pharm. Sci. (Online) ; 59: e22330, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505846

RESUMO

Abstract Donepezil-HCl is a member of the acetylcholinesterase inhibitors that is indicated for the symptomatic treatment of Alzheimer's disease (AD) and has many side effects. In this study, to reduce the side effects of Donepezil-HCl and increase the penetration of the drug through the blood-brain barrier, we aimed to design a solid lipid nanoparticle (SLN) formulation. The effects of the different formulation parameters, such as homogenization speed, sonication time, lipid and drug concentration, surfactant type and concentration, and volume of the aqueous phase, were assessed for optimization. The particle size and PDI increased with increasing lipid concentration but decreased with increasing amounts of surfactant (Tween 80) and co-surfactant (lecithin). When the homogenization rate and sonication time increased, the particle size decreased and the encapsulation efficiency increased. The optimized formulation exhibited particle size, PDI, encapsulation efficiency, and zeta potential of 87.2±0.11 nm; 0.22±0.02; 93.84±0.01 %; -17.0±0.12 mV respectively. The in vitro release investigation revealed that approximately 70% of Donepezil-HCl was cumulatively released after 24 hours. TEM analysis proved that spherical and smooth particles were obtained and formulations had no toxic effect on cells. The final optimized formulation could be a candidate for Donepezil-HCl application in Alzheimer's treatment with reduced side effects and doses for patients


Assuntos
Padrões de Referência , Pesquisa/instrumentação , Nanopartículas/análise , Donepezila/efeitos adversos , Técnicas In Vitro/métodos , Preparações Farmacêuticas/administração & dosagem , Doença de Alzheimer/patologia
3.
J Pharm Sci ; 110(9): 3200-3207, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33984339

RESUMO

In recent years, biomaterial-based treatments, also called guided bone regeneration (GBR), which aim to establish a bone regeneration site and prevent the migration of gingival connective tissue and / or peripheral epithelium through the defective area during periodontal surgical procedures have come to the fore. In this report, we have developed a nanoparticle bearing thermosensitive in situ gel formulation of Pluronic F127 and poly(D,L-lactic acid) based membrane to reveal their utilization at GBR by in-vivo applications. In addition, the encouragement of the bone formation in defect area via inhibition of osteoclastic activity is intended by fabrication these biodegradable biomaterials at a lowered Zoledronic Acid (ZA) dose. Both of the developed materials remained stable under specified stability conditions (25 °C, 6 months) and provided the extended release profile of ZA. The in-vivo efficacy of nanoparticle bearing in situ gel formulation, membrane formulation and simultaneous application for guided bone regeneration was investigated in New Zealand female rabbits with a critical size defect of 0.5 × 0.5 cm in the tibia bone for eight weeks. Based on the histopathological findings, lamellar bone and primarily woven bone formations were observed after 8 weeks of post-implantation of both formulations, while fibrosis was detected only in the untreated group. Lamellar bone growth was remarkably achieved just four weeks after the simultaneous application of formulations. Consequently, the simultaneous application of ZA-membrane and ZA-nanoparticles loaded in-situ gel formulations offers enhanced and faster GBR therapy alternatives.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Animais , Osso e Ossos , Feminino , Membranas Artificiais , Coelhos , Ácido Zoledrônico
4.
Mater Sci Eng C Mater Biol Appl ; 123: 111929, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812571

RESUMO

The equipping of nanoparticles with the peptide moiety recognizing a particular receptor, enables cell or tissue-specific targeting, therefore the optimization of the targeted nanoparticles is a key factor in the formulation design process. In this paper, we report the optimization concept of Doxorubicin encapsulating PEtOx-b-PLA polymersome formulation equipped with Peptide18, which is a breast cancer recognizing tumor homing peptide, and the unveiling of the cell-specific delivery potential. The most dominant formulation parameters, which are the polymer to Doxorubicin mass ratio (w/w) and the aqueous to organic phase ratio (v/v), were optimized using Central Composite Design (CCD) based Response Surface Methodology. The characteristics of optimum polymersome formulation were determined as the hydrodynamic diameter of 146.35 nm, the PDI value of 0.136, and the encapsulation efficiency of 57.11% and TEM imaging, which are in agreement with the DLS data, showed the spherical morphology of the polymersomes. In order to demonstrate the breast cancer-specific delivery of targeted polymersomes, the flow cytometry and confocal microscopy analyses were carried out. The targeted polymersomes were accumulated 8 times higher in AU565 cells compared to MCF10A cells and the intracellular Doxorubicin was almost 10 times higher in AU565 cells. The CCD-mediated optimized targeted polymersomes proposed in this report holds the promise of targeted therapy for breast cancer and can be potentially used for the development of novel treatments.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Humanos , Poliésteres , Polímeros
5.
Macromol Biosci ; 21(2): e2000287, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191572

RESUMO

Prostate cancer is the most common cancer, which is about 15-20% among male cancers worldwide. As most common strategies such as radiotherapy, chemotherapy, or surgery alone can be unsuccessful in the treatment of prostate cancer, this study aims to develop a new approach to deliver newly generated proapoptotic gene, BIKDDA, to androgen independent prostate cancer cells, 22RV1, using new generation nanocarriers called ellipsoids. As far as it is known, this is the first study that assesses the ability of proapoptotic gene BIKDDA to induce apoptosis in prostate cancer cell. BIKDDA encapsulating PEtOx-b-PCL-based ellipsoids are fabricated by solvent-switch method, and their morphology, size, and BIKDDA content are characterized. Gene delivery efficiency of BIKDDA loaded PEtOx-b-PCL ellipsoids is demonstrated by analysis of BIK mRNA expression with real-time PCR. The apoptotic effect of PEtOx-b-PCL ellipsoids loaded with BIKDDA (EPs-BIKDDA) on 22RV1 is shown by Annexin V staining. The obtained results demonstrate that the treatment of 22RV1 cells with EPs-BIKDDA can significantly increase BIK mRNA levels by 4.5-fold leading to cell death. This study not only represents BIKDDA as a potential therapeutic strategy in prostate cancer but also the capacity of ellipsoids as promising in vivo gene delivery vehicles.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Técnicas de Transferência de Genes , Proteínas Mitocondriais/genética , Poliaminas/química , Poliésteres/química , Neoplasias da Próstata/terapia , Apoptose , Linhagem Celular Tumoral , Células HEK293 , Humanos , Masculino , Peso Molecular , Poliaminas/síntese química , Poliésteres/síntese química
6.
Eur J Pharm Sci ; 155: 105561, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950618

RESUMO

Biocompatible materials applied in guided bone regeneration are needed to prevent leakage caused by the invasion of peripheral epithelium. (2.1) The aim of this study is to develop a thermosensitive in situ gel system containing alendronate sodium loaded PLGA nanoparticles and alendronate sodium loaded membranes for guided bone regeneration. Thermosensitive Pluronic F127 gel system was preferred to prevent soft tissue migration to the defect site and prolong the residence time of the nanoparticles in this region. In situ gel system was combined with membrane formulation to enhance bone regenaration activity. Efficacy of combination system was investigated by implanting in 0.5 × 0.5 cm critical size defect in tibia of New Zealand female rabbits. According to the histopathological results, fibroblast formations were found at defect area after 6 weeks of post implantation. In contrast, treatment with the combination of in-situ gel containing nanoparticles with membrane provided woven bone formation with mature bone after 4 weeks of post implantation. As a results, the combination of in-situ gel formulation containing alendronate sodium-loaded nanoparticles with membrane formulation could be effectively applided for guided bone regeneration.


Assuntos
Alendronato , Membranas Artificiais , Animais , Materiais Biocompatíveis , Regeneração Óssea , Feminino , Osteogênese , Coelhos
7.
Turk J Pharm Sci ; 14(1): 56-64, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32454595

RESUMO

OBJECTIVES: The world's population is getting older and the number of people suffering from arthritis is a major problem according to World Health Organization's data. In this respect, the need for more efficient treatment for arthritis becomes an urgent issue. In this research, nanoparticle bearing in situ gelling hydrogel formulation was developed for prolonged local delivery of diclofenac sodium (DS). MATERIALS AND METHODS: Emulsion-solvent evaporation technique was used for the preparation of nanoparticles. Particle size, encapsulation efficiency, morphology, and drug release profile of DS loaded biodegradable nanoparticles as well as gel viscosity and gelation time of in situ gelling hydrogel formulations were optimized to increase the time interval between each dose application for enhanced patience compliance. RESULTS: The spherical nanoparticles with a mean particle diameter of 168 nm was obtained and confirmed by both transmission electron microscope and atomic force microscope. Different types of surfactants were tested in the first emulsification step of nanoparticle production process and Arlacel®-C significantly increased the encapsulation efficiency to 89.7%. Thirty days prolonged in vitro release of DS was achieved by using the combined formulation of polymeric nanoparticles and in situ hydrogel prepared by using poloxomer 407 and chitosan. CONCLUSION: Local administration of DS with this novel delivery system could be considered of having potential to minimize side effects associated with decreased amount of drug in dosage form compared to conventional oral dose.

8.
J Microencapsul ; 32(4): 317-28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26154114

RESUMO

Effective clinical utilisation of non-steroidal anti-inflammatory drugs, such as diclofenac sodium (DS) is significantly limited by their ulcerogenic potential and poor bioavailability after oral administration. The objective of this work was to develop reconstitutable pediatric suspensions of DS-loaded microspheres prepared with an acrylic polymer (Eudragit RS) for improved pediatric delivery of DS. The microspheres were prepared by the water-in-oil-in-water or solid-in-oil-in-water emulsion techniques. Enviromental scanning electron microscopy observations clearly showed that microspheres have spherical shape. The drug entrapment efficiency of these microspheres was found 47.96 ± 0.79% to 88.57 ± 0.59% and their average particle sizes were 23.94-60.78 µm, which are within the desired range for the development of suspension formulation. The in vitro dissolution indicated prolonged sustained release of DS over 8 h. The results of preliminary characterisation studies of suspensions show that a liquid pharmaceutical preparation for oral administration capable of providing a sustained release of DS was successfully obtained.


Assuntos
Resinas Acrílicas/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Preparações de Ação Retardada/química , Diclofenaco/administração & dosagem , Administração Oral , Anti-Inflamatórios não Esteroides/química , Criança , Diclofenaco/química , Humanos , Tamanho da Partícula , Solubilidade , Suspensões/química
9.
AAPS PharmSciTech ; 15(1): 161-76, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24222270

RESUMO

This investigation aimed to develop nimesulide (NMS)-loaded poly(lactic-co-glycolic acid) (PLGA)-based nanoparticulate formulations as a biodegradable polymeric drug carrier to treat rheumatoid arthritis. Polymeric nanoparticles (NPs) were prepared with two different nonionic surfactants, vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) and poly(vinyl alcohol) (PVA), using an ultrasonication solvent evaporation technique. Nine batches were formulated for each surfactant using a 3(2) factorial design for optimal concentration of the emulsifying agents, 0.03-0.09% for vitamin E TPGS and 2-4% for PVA. The surfactant percentage and the drug/polymer ratio (1:10, 1:15, 1:20) of the NMS-loaded NPs were investigated based on four responses: encapsulation efficiency, particle size, the polydispersity index, and the surface charge. The response surface plots and linearity curves indicated a relationship between the experiment's responses and a set of independent variables. The NPs produced with both surfactants exhibited a negative surface charge, and scanning electron micrographs revealed that all of the NPs were spherical in shape. A narrower size distribution and higher drug loadings were achieved in PVA-emulsified PLGA NPs than in the vitamin E TPGS emulsified. Decreasing amounts of both nonionic surfactants resulted in a reduction in the emulsion's viscosity, which led to a decrease in the particle size of NPs. According to the ANOVA results obtained in this present research, vitamin E TPGS exhibited the best correlation between the independent variables, namely drug/polymer ratio and the surfactant percentage, and the dependent variables (encapsulation efficiency R(2) = 0.9603, particle size R(2) = 0.9965, size distribution R(2) = 0.9899, and surface charge R(2) = 0.8969) compared with PVA.


Assuntos
Emulsões/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Sulfonamidas/química , Tensoativos/química , Química Farmacêutica/métodos , Portadores de Fármacos/química , Tamanho da Partícula , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Álcool de Polivinil/química , Vitamina E/análogos & derivados , Vitamina E/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...