Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(38): 34729-34745, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779974

RESUMO

This research focuses on the production and characterization of pristine polyacrylonitrile (PAN) as well as halloysite nanotube (HNT)-doped PAN ultrafiltration (UF) membranes via the phase inversion technique. Membranes containing 0.1, 0.5, and 1% wt HNT in 16% wt PAN are fabricated, and their chemical compositions are examined using Fourier transform infrared (FTIR) spectroscopy. Scanning electron microscopy (SEM) is utilized to characterize the membranes' surface and cross-sectional morphologies. Atomic force microscopy (AFM) is employed to assess the roughness of the PAN/HNT membrane. Thermal characterization is conducted using thermal gravimetric analysis (TGA) and differential thermal analysis (DTA), while contact angle and water content measurements reveal the hydrophilic/hydrophobic properties. The pure water flux (PWF) performance of the porous UF water filtration membranes is evaluated at 3 bar, with porosity and mean pore size calculations. The iron (Fe), manganese (Mn), and total organic carbon (TOC) removal efficiencies of PAN/HNT membranes from dam water are examined, and the surfaces of fouled membranes are investigated by using SEM post-treatment. Mechanical characterization encompasses tensile testing, the Mori-Tanaka homogenization approach, and finite element analysis. The findings offer valuable insights into the impact of HNT doping on PAN membrane characteristics and performance, which will inform future membrane development initiatives.

2.
Nanomaterials (Basel) ; 12(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36364496

RESUMO

In this study, neat polyacrylonitrile (PAN) and fumed silica (FS)-doped PAN membranes (0.1, 0.5 and 1 wt% doped PAN/FS) are prepared using the phase inversion method and are characterised extensively. According to the Fourier Transform Infrared (FTIR) spectroscopy analysis, the addition of FS to the neat PAN membrane and the added amount changed the stresses in the membrane structure. The Scanning Electron Microscope (SEM) results show that the addition of FS increased the porosity of the membrane. The water content of all fabricated membranes varied between 50% and 88.8%, their porosity ranged between 62.1% and 90%, and the average pore size ranged between 20.1 and 21.8 nm. While the neat PAN membrane's pure water flux is 299.8 L/m2 h, it increased by 26% with the addition of 0.5 wt% FS. Furthermore, thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques are used to investigate the membranes' thermal properties. Finally, the mechanical characterisation of manufactured membranes is performed experimentally with tensile testing under dry and wet conditions. To be able to provide further explanation to the explored mechanics of the membranes, numerical methods, namely the finite element method and Mori-Tanaka mean-field homogenisation are performed. The mechanical characterisation results show that FS reinforcement increases the membrane rigidity and wet membranes exhibit more compliant behaviour compared to dry membranes.

3.
Water Sci Technol ; 85(5): 1581-1599, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35290233

RESUMO

Landfilling is one of the most widely used methods to reduce the impact on the environment and human health by ensuring the management of solid wastes. For the process in question to be called landfill, the landfill leachate must be controlled and liner impermeability conditions must be provided. For this reason, compacted clay liners (CCL) and geosynthetic clay liners (GCL) with very low hydraulic conductivity are often used as hydraulic barriers in landfills to prevent the risk of leachate mixing with groundwater. However, as a result of various interactions between leachate-clay liners, changes occur in the hydraulic conductivity of the liners. In this review, the change (increase/decrease) in the hydraulic conductivity of the landfill liners caused by the contaminants in the leachate composition and the mechanisms responsible for this change were examined. In addition, deficiencies in the literature on this subject were identified and directions for future studies were presented.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Silicatos de Alumínio , Humanos , Eliminação de Resíduos/métodos , Resíduos Sólidos , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...