Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 6(5): 3018-3025, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142685

RESUMO

An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron-hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed.

2.
Phys Chem Chem Phys ; 16(30): 16246-54, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24972146

RESUMO

In the search for sustainable energy sources, dye sensitized solar cells (DSSCs) represent an attractive solution due to their low cost, relatively high efficiencies, and flexible design. Porphyrin-based dyes are characterized by strong absorption in the visible part of the spectrum and easy customization allowing their electronic properties to be controlled by structural variations. Here we present a computational screening study of more than 5000 porphyrin-based dyes obtained by modifying the porphyrin backbone (metal center and axial ligands), substituting hydrogen by fluorine, and adding different side and anchoring groups. Based on the calculated frontier orbital energies and optical gaps we quantify the energy level alignment with the TiO2 conduction band and different redox mediators. An analysis of the energy level-structure relationship reveals a significant structural diversity among the dyes with the highest level alignment quality, demonstrating the large degree of flexibility in porphyrin dye design. As a specific example of dye optimization, we show that the level alignment of the high efficiency record dye YD2-o-C8 [Yella et al., Science, 2011, 334, 629-634] can be significantly improved by modest structural variations. All the presented data have been stored in a publicly available database.

3.
Phys Chem Chem Phys ; 15(44): 19478-86, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24129651

RESUMO

An efficient dye sensitized solar cell (DSSC) is one possible solution to meet the world's rapidly increasing energy demands and associated climate challenges. This requires inexpensive and stable dyes with well-positioned frontier energy levels for maximal solar absorption, efficient charge separation, and high output voltage. Here we demonstrate an extensive computational screening of zinc porphyrins functionalized with electron donating side groups and electron accepting anchoring groups. The trends in frontier energy levels versus side groups are analyzed and a no-loss DSSC level alignment quality is estimated. Out of the initial 1029 molecules, we find around 50 candidates with level alignment qualities within 5% of the optimal limit. We show that the level alignment of five zinc porphyrin dyes which were recently used in DSSCs with high efficiencies can be further improved by simple side group substitutions. All frontier energy levels, gaps and level alignment quality values are stored in a database publicly available.


Assuntos
Corantes/química , Metaloporfirinas/química , Energia Solar , Elétrons , Teoria Quântica , Titânio/química
4.
J Phys Chem A ; 116(21): 5164-79, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22524192

RESUMO

Ethyl propionate is a model for fatty acid ethyl esters used as first-generation biodiesel. The atmospheric chemistry of ethyl propionate was investigated at 980 mbar total pressure. Relative rate measurements in 980 mbar N(2) at 293 ± 0.5 K were used to determine rate constants of k(C(2)H(5)C(O)OC(2)H(5) + Cl) = (3.11 ± 0.35) × 10(-11), k(CH(3)CHClC(O)OC(2)H(5) + Cl) = (7.43 ± 0.83) × 10(-12), and k(C(2)H(5)C(O)OC(2)H(5) + OH) = (2.14 ± 0.21) × 10(-12) cm(3) molecule(-1) s(-1). At 273-313 K, a negative Arrhenius activation energy of -3 kJ mol(-1) is observed.. The chlorine atom-initiated oxidation of ethyl propionate in 980 mbar N(2) gave the following products (stoichiometric yields): ClCH(2)CH(2)C(O)OC(2)H(5) (0.204 ± 0.031), CH(3)CHClC(O)OC(2)H(5) (0.251 ± 0.040), and C(2)H(5)C(O)OCHClCH(3) (0.481 ± 0.088). The chlorine atom-initiated oxidation of ethyl propionate in 980 mbar of N(2)/O(2) (with and without NO(x)) gave the following products: ethyl pyruvate (CH(3)C(O)C(O)OC(2)H(5)), propionic acid (C(2)H(5)C(O)OH), formaldehyde (HCHO), and, in the presence of NO(x), PAN (CH(3)C(O)OONO(2)). The lack of acetaldehyde as a product suggests that the CH(3)CH(O)C(O)OC(2)H(5) radical favors isomerization over decomposition. From the observed product yields, we conclude that H-abstraction by chlorine atoms from ethyl propionate occurs 20.4 ± 3.1%, 25.1 ± 4.0%, and 48.1 ± 8.8% from the CH(3)-, -CH(2)-, and -OCH(2)- groups, respectively. The rate constant and branching ratios for the reaction between ethyl propionate and the OH radical were investigated theoretically using quantum mechanical calculations and transition state theory. The stationary points along the reaction path were optimized using the CCSD(T)-F12/VDZ-F12//BH&HLYP/aug-cc-pVTZ level of theory; this model showed that OH radicals abstract hydrogen atoms primarily from the -OCH(2)- group (80%).


Assuntos
Atmosfera/química , Propionatos/química , Acetatos/química , Cloro/química , Ésteres , Modelos Moleculares , Conformação Molecular , Óxido Nítrico/química , Nitrogênio/química , Oxigênio/química
5.
J Phys Chem A ; 116(24): 5756-62, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22452246

RESUMO

Peroxy radicals formed by addition of OH and O(2) to the olefinic carbon atoms in methacrolein react with NO to form methacrolein hydroxy nitrate and hydroxyacetone. We observe that the ratio of these two compounds, however, unexpectedly decreases as the lifetime of the peroxy radical increases. We propose that this results from an isomerization involving the 1,4-H-shift of the aldehydic hydrogen atom to the peroxy group. The inferred rate (0.5 ± 0.3 s(-1) at T = 296 K) is consistent with estimates obtained from the potential energy surface determined by high level quantum calculations. The product, a hydroxy hydroperoxy carbonyl radical, decomposes rapidly, producing hydroxyacetone and re-forming OH. Simulations using a global chemical transport model suggest that most of the methacrolein hydroxy peroxy radicals formed in the atmosphere undergo isomerization and decomposition.


Assuntos
Acroleína/análogos & derivados , Atmosfera/química , Oxigênio/química , Peróxidos/química , Acroleína/química , Radicais Livres/química , Estrutura Molecular , Estereoisomerismo
6.
J Phys Chem A ; 116(24): 5763-8, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22452294

RESUMO

We investigate the oxidation of methacryloylperoxy nitrate (MPAN) and methacrylicperoxy acid (MPAA) by the hydroxyl radical (OH) theoretically, using both density functional theory [B3LYP] and explicitly correlated coupled cluster theory [CCSD(T)-F12]. These two compounds are produced following the abstraction of a hydrogen atom from methacrolein (MACR) by the OH radical. We use a RRKM master equation analysis to estimate that the oxidation of MPAN leads to formation of hydroxymethyl-methyl-α-lactone (HMML) in high yield. HMML production follows a low potential energy path from both MPAN and MPAA following addition of OH (via elimination of the NO(3) and OH from MPAN and MPAA, respectively). We suggest that the subsequent heterogeneous phase chemistry of HMML may be the route to formation of 2-methylglyceric acid, a common component of organic aerosol produced in the oxidation of methacrolein. Oxidation of acrolein, a photo-oxidation product from 1,3-butadiene, is found to follow a similar route generating hydroxymethyl-α-lactone (HML).


Assuntos
Acroleína/análogos & derivados , Atmosfera/química , Ácidos Glicéricos/síntese química , Lactonas/síntese química , Acroleína/química , Aerossóis/síntese química , Aerossóis/química , Ácidos Glicéricos/química , Radical Hidroxila/química , Lactonas/química , Estrutura Molecular , Oxirredução , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...