Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroinform ; 18: 1284107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421771

RESUMO

Neuroscientists employ a range of methods and generate increasing amounts of data describing brain structure and function. The anatomical locations from which observations or measurements originate represent a common context for data interpretation, and a starting point for identifying data of interest. However, the multimodality and abundance of brain data pose a challenge for efforts to organize, integrate, and analyze data based on anatomical locations. While structured metadata allow faceted data queries, different types of data are not easily represented in a standardized and machine-readable way that allow comparison, analysis, and queries related to anatomical relevance. To this end, three-dimensional (3D) digital brain atlases provide frameworks in which disparate multimodal and multilevel neuroscience data can be spatially represented. We propose to represent the locations of different neuroscience data as geometric objects in 3D brain atlases. Such geometric objects can be specified in a standardized file format and stored as location metadata for use with different computational tools. We here present the Locare workflow developed for defining the anatomical location of data elements from rodent brains as geometric objects. We demonstrate how the workflow can be used to define geometric objects representing multimodal and multilevel experimental neuroscience in rat or mouse brain atlases. We further propose a collection of JSON schemas (LocareJSON) for specifying geometric objects by atlas coordinates, suitable as a starting point for co-visualization of different data in an anatomical context and for enabling spatial data queries.

2.
Front Neuroinform ; 17: 1154080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970659

RESUMO

Brain atlases are widely used in neuroscience as resources for conducting experimental studies, and for integrating, analyzing, and reporting data from animal models. A variety of atlases are available, and it may be challenging to find the optimal atlas for a given purpose and to perform efficient atlas-based data analyses. Comparing findings reported using different atlases is also not trivial, and represents a barrier to reproducible science. With this perspective article, we provide a guide to how mouse and rat brain atlases can be used for analyzing and reporting data in accordance with the FAIR principles that advocate for data to be findable, accessible, interoperable, and re-usable. We first introduce how atlases can be interpreted and used for navigating to brain locations, before discussing how they can be used for different analytic purposes, including spatial registration and data visualization. We provide guidance on how neuroscientists can compare data mapped to different atlases and ensure transparent reporting of findings. Finally, we summarize key considerations when choosing an atlas and give an outlook on the relevance of increased uptake of atlas-based tools and workflows for FAIR data sharing.

3.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35262177

RESUMO

Axonal projections from layer V neurons of distinct neocortical areas are topographically organized into discrete clusters within the pontine nuclei during the establishment of voluntary movements. However, the molecular determinants controlling corticopontine connectivity are insufficiently understood. Here, we show that an intrinsic cortical genetic program driven by Nr2f1 graded expression is directly implicated in the organization of corticopontine topographic mapping. Transgenic mice lacking cortical expression of Nr2f1 and exhibiting areal organization defects were used as model systems to investigate the arrangement of corticopontine projections. By combining three-dimensional digital brain atlas tools, Cre-dependent mouse lines and axonal tracing, we show that Nr2f1 expression in postmitotic neurons spatially and temporally controls somatosensory topographic projections, whereas expression in progenitor cells influences the ratio between corticopontine and corticospinal fibres passing the pontine nuclei. We conclude that cortical gradients of area-patterning genes are directly implicated in the establishment of a topographic somatotopic mapping from the cortex onto pontine nuclei.


Assuntos
Mapeamento Encefálico , Ponte , Animais , Axônios , Córtex Cerebral , Camundongos , Vias Neurais/fisiologia , Neurônios , Ponte/fisiologia
4.
Front Neuroanat ; 12: 82, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450039

RESUMO

In experimental neuroscientific research, anatomical location is a key attribute of experimental observations and critical for interpretation of results, replication of findings, and comparison of data across studies. With steadily rising numbers of publications reporting basic experimental results, there is an increasing need for integration and synthesis of data. Since comparison of data relies on consistently defined anatomical locations, it is a major concern that practices and precision in the reporting of location of observations from different types of experimental studies seem to vary considerably. To elucidate and possibly meet this challenge, we have evaluated and compared current practices for interpreting and documenting the anatomical location of measurements acquired from murine brains with different experimental methods. Our observations show substantial differences in approach, interpretation and reproducibility of anatomical locations among reports of different categories of experimental research, and strongly indicate that ambiguous reports of anatomical location can be attributed to missing descriptions. Based on these findings, we suggest a set of minimum requirements for documentation of anatomical location in experimental murine brain research. We furthermore demonstrate how these requirements have been applied in the EU Human Brain Project to optimize workflows for integration of heterogeneous data in common reference atlases. We propose broad adoption of some straightforward steps for improving the precision of location metadata and thereby facilitating interpretation, reuse and integration of data.

5.
Eur Psychiatry ; 50: 70-76, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29519589

RESUMO

The Human Brain Project (HBP), an EU Flagship Initiative, is currently building an infrastructure that will allow integration of large amounts of heterogeneous neuroscience data. The ultimate goal of the project is to develop a unified multi-level understanding of the brain and its diseases, and beyond this to emulate the computational capabilities of the brain. Reference atlases of the brain are one of the key components in this infrastructure. Based on a new generation of three-dimensional (3D) reference atlases, new solutions for analyzing and integrating brain data are being developed. HBP will build services for spatial query and analysis of brain data comparable to current online services for geospatial data. The services will provide interactive access to a wide range of data types that have information about anatomical location tied to them. The 3D volumetric nature of the brain, however, introduces a new level of complexity that requires a range of tools for making use of and interacting with the atlases. With such new tools, neuroscience research groups will be able to connect their data to atlas space, share their data through online data systems, and search and find other relevant data through the same systems. This new approach partly replaces earlier attempts to organize research data based only on a set of semantic terminologies describing the brain and its subdivisions.


Assuntos
Mapeamento Encefálico , Encéfalo/anatomia & histologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...