Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 160(1): 1-16, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407778

RESUMO

Photosynthesis relies on the absorption of sunlight by photosynthetic pigments (PPs) such as chlorophylls and carotenoids. While these pigments are outstanding at harvesting light, their natural structure restricts their ability to harvest light at specific wavelengths. In this study, Oleic acid-capped CdSeS and CdTeS ternary quantum dots (QDs) were synthesized using a novel two-phase synthesis method. Then, these QDs were used to interact with raw PPs, a mixture of chlorophylls and carotenoids isolated from spinach. Our findings revealed the following: (1) Interacting QDs with raw PPs effectively inhibited the chlorophyll fluorescence of the pigments upon excitation in UV light region (250-400 nm) without causing any damage to their structure. (2) By forming an interaction with QDs, the chlorophyll fluorescence of raw PPs could be induced through excitation with green-light spectrum. (3) The composition of the QDs played a fundamental role in their interaction with PPs. Our study demonstrated that the photophysical properties of isolated PPs could be modified by using cadmium-based QDs by preserving the structure of the pigments themselves.


Assuntos
Pontos Quânticos , Cádmio , Raios Ultravioleta , Fotossíntese , Clorofila/química , Carotenoides/metabolismo
2.
Chem Commun (Camb) ; 60(7): 866-869, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38164651

RESUMO

Whitish-blue light emitting fluorescent ZIF-8 structures were synthesized by means of bis-carboxylate functional calix[4]pyrrole (BCCP) modification. The calix[4]pyrrole concentration was also manipulated to tune the sizes of the ZIF-8 structures. Moreover, the BCCP-modified ZIF-8 samples exhibited enhanced organic micropollutant removal capacity from aqueous solutions.

3.
Dalton Trans ; 52(17): 5704-5714, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37021878

RESUMO

Cadmium-based quantum dots (QDs) are amongst the most studied nanomaterials due to their excellent photophysical properties, which can be controlled by controlling the size and/or composition of the nanocrystal. However, the ultraprecise control over size and photophysical properties of Cd-based quantum dots and developing user-friendly techniques to synthesize amino acid-functionalized cadmium-based QDs are still the on-going challenges. In this study, we modified a traditional two-phase synthesis method to synthesize cadmium telluride sulfide (CdTeS) QDs. CdTeS QDs were grown with an extremely slow growth-rate (growth saturation of about 3 days), which allowed us to have an ultraprecise control over size, and as a consequence, the photophysical properties. Also, the composition of CdTeS could be controlled by controlling the precursor ratios. The CdTeS QDs were successfully functionalized with a water-soluble amino acid, L-cysteine, and an amino acid derivative, N-acetyl-L-cysteine. Red-emissive L-cysteine-functionalized CdTeS QDs interacted with yellow-emissive carbon dots. The fluorescence intensity of carbon dots increased upon interaction with CdTeS QDs. This study proposes a mild method that allows to grow QDs with an ultraprecise control over the photophysical properties and shows the implementation of Cd-based QDs to enhance the fluorescence intensity of different fluorophores with fluorescence wavelength at higher energy bands.

4.
ACS Omega ; 8(2): 2112-2118, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687068

RESUMO

We report on time-dependent density functional theory calculations of the excited states of 63 different graphene quantum dots (GQDs) in square shape with side lengths of 1, 1.5, and 2 nm. We investigate the systematics and trends in the UV-vis absorption spectra of these GQDs, which are doped with elements B, N, O, S, and P at dopant percentages of 1.5%, 3%, 5%, and 7%. The results show how the peaks in the UV and visible parts of the spectrum as well as the total absorption evolve in the chemical parameter space along the coordinates of size, dopant type, and dopant percentage. The absorption spectra calculated here can be used to obtain particular GQD mixture proportions that would yield a desired absorption profile such as flat absorption across the whole visible spectrum or one that is locally peaked around a chosen wavelength.

5.
ACS Omega ; 7(33): 29297-29305, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36033706

RESUMO

Carbon dots (CDs) are versatile fluorescent nanocrystals with unique optical and structural properties and are commonly used in biosensing, bioimaging, and biomolecule tagging studies. However, fluorescence of CDs is brightest in the wavelength range of 430-530 nm, which overlaps with the autofluorescence range of many eukaryotic cells and makes CDs impractical for in vivo and in vitro imaging studies. Thus, the design of yellow-red emissive CDs with high quantum yield is of importance. In this study, the quantum yield of traditional yellow emissive CDs was enhanced by two different methods: (1) the surface of traditional yellow emissive CDs passivated with a biomolecule, urea, through easy, rapid, inexpensive microwave assisted synthesis methods and (2) a fluorescent biomolecule, aflatoxin B1, used as an energy donor for yellow emissive CDs. In the first method, the quantum yield of the CDs was enhanced to 51%. In the second method, an efficient energy transfer (above 40%) from aflatoxin B1 to the CDs was observed. Our study showed that highly luminescent yellow emissive CDs can be synthesized by simple, rapid microwave assisted synthesis methods, and these CDs are potential candidates to sense aflatoxin B1. Furthermore, our results indicated that Aflatoxin B1 can be considered as an emission booster for CDs.

6.
ACS Omega ; 7(22): 18840-18851, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694496

RESUMO

Carbon dots (CDs) are carbon-based fluorescent nanomaterials that are of interest in different research areas due to their low cost production and low toxicity. Considering their unique photophysical properties, hydrophobic/amphiphilic CDs are powerful alternatives to metal-based quantum dots in LED and photovoltaic cell designs. On the other hand, CDs possess a considerably high amount of surface defects that give rise to two significant drawbacks: (1) causing decrease in quantum yield (QY), a crucial drawback that limits their utilization in LEDs, and (2) affecting the efficiency of charge transfer, a significant factor that limits the use of CDs in photovoltaic cells. In this study, we synthesized highly luminescent, water-insoluble, slightly amphiphilic CDs by using a macrocyclic compound, calix[4]pyrrole, for the first time in the literature. Calix[4]pyrrole-derived CDs (CP-DOTs) were highly luminescent with a QY of over 60% and size of around 4-10 nm with graphitic structure. The high quantum yield of CP-DOTs indicated that they had less amount of surface defects. Furthermore, CP-DOTs were used as an additive in the active layer of organic solar cells (OSC). The photovoltaic parameters of OSCs improved upon addition of CDs. Our results indicated that calix[4]pyrrole is an excellent carbon precursor to synthesize highly luminescent and water-insoluble carbon dots, and CDs derived from calix[4]pyrrole are excellent candidates to improve optoelectronic devices.

7.
Funct Plant Biol ; 49(6): 444-451, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35184797

RESUMO

Quantum dots are versatile fluorescent semiconductor nanocrystals with unique photophysical properties. They have been used in various research fields of biotechnology effectively for almost three decades including cell imaging, protein tracking, energy transfer, etc. With their great potential as energy donors or acceptors, quantum dots have also been used in many studies about altering growth rate and photosynthetic activity of photosynthetic organisms by manipulating their light harvesting capacity. In this review, effect of quantum dots on growth rate of photosynthetic organisms and light harvesting capacity of photosynthetic organisms were discussed in details together with toxic effects of cadmium-based and carbon-based quantum dots on photosynthetic organisms. In short, as one of the promising materials of nanotechnology, quantum dots have become one of the essential research topics in photosynthesis research area and will help researchers to manipulate natural photosynthesis in future.


Assuntos
Pontos Quânticos , Carbono/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Pontos Quânticos/toxicidade
8.
Luminescence ; 37(2): 268-277, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34806285

RESUMO

Quantum dots (QDs) are significant fluorescent materials for energy transfer studies with phthalocyanines (Pcs) and phthalocyanine (Pc)-like biomolecules (such as chlorophylls). Carbon-based QDs, especially, have been used in numerous studies concerning energy transfer with chlorophylls, but the numbers of studies concerning energy transfer between phthalocyanines and carbon-based QDs are limited. In this study, peripherally, hydroxythioethyl terminal group substituted metal-free phthalocyanine (H2 Pc) and zinc phthalocyanine (ZnPc) were noncovalently (electrostatic and/or π-π interaction) attached to carbon QDs containing boron and nitrogen to form QD-Pc nanoconjugates. The QD-Pc conjugates were characterized using different spectroscopic techniques (Fourier transform infrared spectroscopy and transmission electron microscopy). The absorption and fluorescence properties of QD-Pc structures in solution were studied. It was found that the quantum yields of the QDs slightly decreased from 30% to 25% upon doping the QDs with heteroatoms B and N. Förster resonance energy transfer efficiency was calculated as 33% for BCN-QD/ZnPc. For the other conjugates, almost no energy transfer from QDs to Pc cores was observed. It was shown that the energy transfer between QDs to Pc cores was completely different from the energy transfer between QDs and photosynthetic pigments, and therefore we concluded that heteroatom doping in the QD structure and the existence of zinc metal in the phthalocyanine structure is obligatory for an efficient energy transfer.


Assuntos
Pontos Quânticos , Carbono , Transferência Ressonante de Energia de Fluorescência , Indóis , Isoindóis
9.
Adv Sci (Weinh) ; 8(21): e2102510, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34528414

RESUMO

One of the major challenges in modern robotics is controlling micromanipulation by active and adaptive materials. In the respiratory system, such actuation enables pathogen clearance by means of motile cilia. While various types of artificial cilia have been engineered recently, they often involve complex manufacturing protocols and focus on transporting liquids only. Here, soft magnetic carpets are created via an easy self-assembly route based on the Rosensweig instability. These carpets can transport not only liquids but also solid objects that are larger and heavier than the artificial cilia, using a crowd-surfing effect.This amphibious transportation is locally and reconfigurably tunable by simple micromagnets or advanced programmable magnetic fields with a high degree of spatial resolution. Two surprising cargo reversal effects are identified and modeled due to collective ciliary motion and nontrivial elastohydrodynamics. While the active carpets are generally applicable to integrated control systems for transport, mixing, and sorting, these effects can also be exploited for microfluidic viscosimetry and elastometry.


Assuntos
Hidrodinâmica , Magnetismo , Órgãos Artificiais , Cílios/fisiologia , Elasticidade , Campos Magnéticos , Robótica , Viscosidade
10.
Turk J Chem ; 45(3): 520-527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385848

RESUMO

CdSe quantum dots are the most studied Cd-based quantum dots with their high quantum yield, high photostability, narrow emission band, and easy synthesis procedure. They are frequently used to develop light emitting diode (LED) due to their unique photophysical properties; however, their narrow emission band causes a challenge to design white LEDs because white light emission requires emission in multiple wavelengths with broad emission bands. Here in this study, we developed CdSe quantum dots with a narrow band-edge emission band and broad defect-state emission band through a modified two-phase synthesis method. Our results revealed that defect-state emission is directly linked to the surface of quantum dots and can be excited through exciting surfactant around the quantum dot. The effect of surfactant on emission properties of CdSe quantum dots diminished upon growing a shell around CdSe quantum dots; as a result, surface-dependent defect-state emission cannot be observed in gradient heterogeneous alloyed CdSxSe1-x quantum dots.

11.
Emergent Mater ; 4(1): 187-209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718778

RESUMO

Quantum dots (QDs) are synthetic semiconductor nanocrystals with unique optical and electronic properties due to their size (2-10 nm) such as high molar absorption coefficient (10-100 times higher than organic dyes), resistance to chemical degradation, and unique optoelectronic properties due to quantum confinement (high quantum yield, emission color change with size). Compared to organic fluorophores, the narrower emission band and wider absorption bands of QDs offer great advantages in cell imaging and biosensor applications. The optoelectronic features of QDs have prompted their intensive use in bioanalytical, biophysical, and biomedical research. As the nanomaterials have been integrated into microfluidic systems, microfluidic technology has accelerated the adaptation of nanomaterials to clinical evaluation together with the advantages such as being more economical, more reproducible, and more susceptible to modification and integration with other technologies. Microfluidic systems serve an important role by being a platform in which QDs are integrated for biosensing applications. As we combine the advantages of QDs and microfluidic technology for biosensing technology, QD-based biosensor integrated with microfluidic systems can be used as an advanced and versatile diagnostic technology in case of pandemic. Specifically, there is an urgent necessity to have reliable and fast detection systems for COVID-19 virus. In this review, affinity-based biosensing mechanisms which are developed with QDs are examined in the domain of microfluidic approach. The combination of microfluidic technology and QD-based affinity biosensors are presented with examples in order to develop a better technological framework of diagnostic for COVID-19 virus.

12.
Photosynth Res ; 147(1): 1-10, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33034816

RESUMO

Light harvesting in photosynthesis is currently an issue on-debate and studied widely in all over the world. Studies on light harvesting mainly focus on enlightening molecular mechanism of the process and enhancing absorption capacity of light harvesting complexes (LHCs). Enhancement of absorption capacity of LHCs can be done either by natural methods or by synthetic methods. Quantum dots (QDs), fluorescent semiconductor nanocrystals, are important constituents of inorganic-organic hybrid structures which are built to enhance absorption capacity of LHCs through synthetic methods. In this study, we synthesized carbon and heteroatom doped carbon QDs through a microwave assisted synthesis method. Each QD had unique photophysical and structural properties. Photosynthetic pigments (PP) (isolated from spinach leaves) were mixed with each QD separately to build a QD-PP hybrid structure. Our results revealed that significant amount of energy is transferred from carbon QDs to PPs and therefore chlorophyll fluorescence capacity of PPs enhanced significantly in 360-420 nm excitation wavelength interval. Our results suggested that non-toxic, inexpensive and easily synthesized carbon QDs can be an important constituent for hybrid structures to enhance absorption capacity of LHCs in highly energetic region of visible spectrum.


Assuntos
Carbono/química , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Pigmentos Biológicos/química , Pontos Quânticos/química , Spinacia oleracea/fisiologia , Clorofila/metabolismo , Transferência de Energia , Fluorescência
13.
Biochim Biophys Acta Bioenerg ; 1859(7): 471-481, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29625089

RESUMO

The bioenergetics of light-harvesting by photosynthetic antenna proteins in higher plants is well understood. However, investigation into the regulatory non-photochemical quenching (NPQ) mechanism, which dissipates excess energy in high light, has led to several conflicting models. It is generally accepted that the major photosystem II antenna protein, LHCII, is the site of NPQ, although the minor antenna complexes (CP24/26/29) are also proposed as alternative/additional NPQ sites. LHCII crystals were shown to exhibit the short excitation lifetime and several spectral signatures of the quenched state. Subsequent structure-based models showed that this quenching could be explained by slow energy trapping by the carotenoids, in line with one of the proposed models. Using Fluorescence Lifetime Imaging Microscopy (FLIM) we show that the crystal structure of CP29 corresponds to a strongly quenched conformation. Using a structure-based theoretical model we show that this quenching may be explained by the same slow, carotenoid-mediated quenching mechanism present in LHCII crystals.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Cristalização , Transferência de Energia , Fluorescência , Simulação de Dinâmica Molecular
14.
Mol Biol Cell ; 29(11): 1299-1310, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668348

RESUMO

The anisotropic organization of plasma membrane constituents is indicative of mechanisms that drive the membrane away from equilibrium. However, defining these mechanisms is challenging due to the short spatiotemporal scales at which diffusion operates. Here, we use high-density single protein tracking combined with photoactivation localization microscopy (sptPALM) to monitor Cdc42 in budding yeast, a system in which Cdc42 exhibits anisotropic organization. Cdc42 exhibited reduced mobility at the cell pole, where it was organized in nanoclusters. The Cdc42 nanoclusters were larger at the cell pole than those observed elsewhere in the cell. These features were exacerbated in cells expressing Cdc42-GTP, and were dependent on the scaffold Bem1, which contributed to the range of mobility and nanocluster size exhibited by Cdc42. The lipid environment, in particular phosphatidylserine levels, also played a role in regulating Cdc42 nanoclustering. These studies reveal how the mobility of a Rho GTPase is controlled to counter the depletive effects of diffusion, thus stabilizing Cdc42 on the plasma membrane and sustaining cell polarity.


Assuntos
Nanopartículas/química , Fosfatidilserinas/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Difusão , Proteínas de Membrana/metabolismo
15.
Elife ; 62017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28304276

RESUMO

Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Canais de Cloreto/metabolismo , Microscopia Intravital , Microscopia , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais
16.
Eur Biophys J ; 45(3): 209-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26518693

RESUMO

In response to changes in the reduction state of the plastoquinone pool in its thylakoid membrane, the green alga Chlamydomonas reinhardtti is performing state transitions: remodelling of its thylakoid membrane leads to a redistribution of excitations over photosystems I and II (PSI and PSII). These transitions are accompanied by marked changes in the 77 K fluorescence spectrum, which form the accepted signature of state transitions. The changes are generally thought to reflect a redistribution of light-harvesting complexes (LHCs) over PSII (fluorescing below 700 nm) and PSI (fluorescing above 700 nm). Here we studied the picosecond fluorescence properties of C. reinhardtti over a broad range of wavelengths with very low excitation intensities (0.2 nJ per laser pulse). Cells were directly used for time-resolved fluorescence measurements at 77 K without further treatment, such as medium exchange with glycerol. It is observed that upon going from state 1 (relatively more fluorescence below 700 nm) to state 2 (relatively more fluorescence above 700 nm), a large part of the fluorescence of LHC/PSII becomes substantially quenched in concurrence with LHC detachment from PSII, whereas the absolute amount of PSI fluorescence hardly changes. These results are in agreement with the recent proposal that the amount of LHC moving from PSII to PSI upon going from state 1 to state 2 is rather limited (Unlu et al. Proc Natl Acad Sci USA 111 (9):3460-3465, 2014).


Assuntos
Fluorescência , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/química
17.
Biochim Biophys Acta ; 1837(12): 1981-1988, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25291424

RESUMO

Minor light-harvesting complexes (Lhcs) CP24, CP26 and CP29 occupy a position in photosystem II (PSII c' plants between the major light-harvesting complexes LHCII and the PSII core subunits. Lack of minor Lhcs in vivo causes impairment of PSII organization, and negatively affects electron transport rates anc photoprotection capacity. Here we used picosecond-fluorescence spectroscopy to study excitation-energy transfer (EET) in thylakoid membranes isolated from Arabidopsis thaliana wild-type plants and knockout lines depleted of either two (koCP26/24 and koCP29/24) or all minor Lhcs (NoM). In the absence of all minor Lhcs. the functional connection ofLHCII to the PSII cores appears to be seriously impaired whereas the "disconnected" LHCII is substantially quenched. For both double knock-out mutants, excitation trapping in PSII is faster than in NoM thylakoids but slower than in WT thylakoids. In NoM thylakoids, the loss of all minor Lhcs is accompanied by an over-accumulation ofLHCII, suggesting a compensating response to the reduced trapping efficiency in limiting light, which leads to a photosynthetic phenotype resembling that of low-light-acclimated plants. Finally. fluorescence kinetics and biochemical results show that the missing minor complexes are not replaced by other Lhcs, implying that they are unique among the antenna subunits and crucial for the functioning and macroorganization of PSII.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação à Clorofila/genética , Proteínas de Cloroplastos/genética , Mutação , Complexo de Proteína do Fotossistema II/genética , Ribonucleoproteínas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Clorofila/química , Clorofila/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Transferência de Energia , Fluorescência , Immunoblotting , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Ribonucleoproteínas/metabolismo , Espectrometria de Fluorescência , Tilacoides/genética , Tilacoides/metabolismo , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 111(9): 3460-5, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550508

RESUMO

Plants and green algae optimize photosynthesis in changing light conditions by balancing the amount of light absorbed by photosystems I and II. These photosystems work in series to extract electrons from water and reduce NADP(+) to NADPH. Light-harvesting complexes (LHCs) are held responsible for maintaining the balance by moving from one photosystem to the other in a process called state transitions. In the green alga Chlamydomonas reinhardtii, a photosynthetic model organism, state transitions are thought to involve 80% of the LHCs. Here, we demonstrate with picosecond-fluorescence spectroscopy on C. reinhardtii cells that, although LHCs indeed detach from photosystem II in state 2 conditions, only a fraction attaches to photosystem I. The detached antenna complexes become protected against photodamage via shortening of the excited-state lifetime. It is discussed how the transition from state 1 to state 2 can protect C. reinhardtii in high-light conditions and how this differs from the situation in plants.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...