Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 31(7): 2032-2043, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146823

RESUMO

Anthropogenic environmental changes are affecting biodiversity and microevolution worldwide. Ectothermic vertebrates are especially vulnerable because environmental changes can disrupt their sexual development and cause sex reversal, a mismatch between genetic and phenotypic sex. This can potentially lead to sex-ratio distortion and population decline. Despite these implications, there is scarce empirical knowledge on the incidence of sex reversal in nature. Populations in anthropogenic environments may be exposed to sex-reversing stimuli more frequently, which may lead to higher sex-reversal rate or, alternatively, these populations may adapt to resist sex reversal. We developed PCR-based genetic sex markers for the common toad (Bufo bufo) to assess the prevalence of sex reversal in wild populations living in natural, agricultural and urban habitats, and the susceptibility of the same populations to two ubiquitous oestrogenic pollutants in a common garden experiment. We found negligible sex-reversal frequency in free-living adults despite the presence of various endocrine-disrupting pollutants in their breeding ponds. Individuals from different habitat types showed similar susceptibility to sex reversal in the laboratory: all genetic males developed female phenotype when exposed to 1 µg L-1 17α-ethinylestradiol (EE2) during larval development, whereas no sex reversal occurred in response to 1 ng L-1 EE2 and a glyphosate-based herbicide with 3 µg L-1 or 3 mg L-1  glyphosate. The latter results do not support that populations in anthropogenic habitats would have either increased propensity for or higher tolerance to chemically induced sex reversal. Thus, the extremely low sex-reversal frequency in wild toads compared to other ectothermic vertebrates studied before might indicate idiosyncratic, potentially species-specific resistance to sex reversal.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Bufo bufo/fisiologia , Bufonidae/genética , Ecossistema , Etinilestradiol , Feminino , Marcadores Genéticos , Masculino
2.
Mol Ecol ; 29(19): 3607-3621, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32799395

RESUMO

Populations of ectothermic vertebrates are vulnerable to environmental pollution and climate change because certain chemicals and extreme temperatures can cause sex reversal during early ontogeny (i.e. genetically female individuals develop male phenotype or vice versa), which may distort population sex ratios. However, we have troublingly little information on sex reversals in natural populations, due to unavailability of genetic sex markers. Here, we developed a genetic sexing method based on sex-linked single nucleotide polymorphism loci to study the prevalence and fitness consequences of sex reversal in agile frogs (Rana dalmatina). Out of 125 juveniles raised in laboratory without exposure to sex-reversing stimuli, 6 showed male phenotype but female genotype according to our markers. These individuals exhibited several signs of poor physiological condition, suggesting stress-induced sex reversal and inferior fitness prospects. Among 162 adults from 11 wild populations in North-Central Hungary, 20% of phenotypic males had female genotype according to our markers. These individuals occurred more frequently in areas of anthropogenic land use; this association was attributable to agriculture and less strongly to urban land use. Female-to-male sex-reversed adults had similar body mass as normal males. We recorded no events of male-to-female sex reversal either in the laboratory or in the wild. These results support recent suspicions that sex reversal is widespread in nature, and suggest that human-induced environmental changes may contribute to its pervasiveness. Furthermore, our findings indicate that sex reversal is associated with stress and poor health in early life, but sex-reversed individuals surviving to adulthood may participate in breeding.


Assuntos
Ranidae , Razão de Masculinidade , Adulto , Animais , Cruzamento , Feminino , Marcadores Genéticos , Genótipo , Humanos , Masculino , Ranidae/genética
3.
J Anim Ecol ; 88(12): 1925-1935, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408536

RESUMO

1. Inducible defences are ubiquitous in the animal kingdom, but little is known about facultative changes in chemical defences in response to predators, especially so in vertebrates. 2. We tested for predator-induced changes in toxin production of larval common toads (Bufo bufo), which are known to synthesize bufadienolide compounds. 3. The experiment included larvae originating from three permanent and three temporary ponds reared in the presence or absence of chemical cues of three predators: dragonfly larvae, newts or fish. 4. Tadpoles raised with chemical cues of predation risk produced higher numbers of bufadienolide compounds and larger total bufadienolide quantities than predator-naive conspecifics. Further, the increase in intensity of chemical defence was greatest in response to fish, weakest to newts and intermediate to dragonfly larvae. Tadpoles originating from temporary and permanent ponds did not differ in their baseline toxin content or in the magnitude of their induced chemical responses. 5. These results provide the first compelling evidence for predator-induced changes in chemical defence of a vertebrate that may have evolved to enhance survival under predation risk.


Assuntos
Odonatos , Animais , Sinais (Psicologia) , Larva , Comportamento Predatório , Salamandridae
4.
Ecol Evol ; 9(11): 6287-6299, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236221

RESUMO

Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator-induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free-ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator-naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator-induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.

5.
Sci Rep ; 9(1): 3163, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816222

RESUMO

Despite the well-documented effects of human-induced environmental changes on the morphology, physiology, behaviour and life history of wild animals, next to nothing is known about how anthropogenic habitats influence anti-predatory chemical defence, a crucial fitness component of many species. We investigated the amount and composition of defensive toxins in adult common toads (Bufo bufo) captured in natural, agricultural and urban habitats, and in their offspring raised in a common-garden experiment. We found that, compared to toads captured from natural habitats, adults from both types of anthropogenic habitats had larger toxin glands (parotoids) and their toxin secretion contained higher concentrations of bufagenins, the more potent class of bufadienolide toxins. Furthermore, urban toads had lower concentrations of bufotoxins, the compounds with lower toxicity. None of these differences were present in the captive-raised juveniles; instead, toadlets originating from agricultural habitats had smaller parotoids and lower bufotoxin concentrations. These results suggest that toads' chemical defences respond to the challenges of anthropogenic environments via phenotypic plasticity. These responses may constitute non-adaptive consequences of pollution by endocrine-disrupting chemicals as well as adaptive adjustments to the altered predator assemblages of urban and agricultural habitats.


Assuntos
Bufanolídeos , Bufo bufo/fisiologia , Comportamento Predatório/fisiologia , Toxinas Biológicas/fisiologia , Agricultura , Animais , Ecossistema , Disruptores Endócrinos , Humanos , Larva/fisiologia , Toxinas Biológicas/biossíntese
6.
Sci Total Environ ; 634: 1335-1345, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710633

RESUMO

Many chemical pollutants have endocrine disrupting effects which can cause lifelong reproductive abnormalities in animals. Amphibians are the most threatened group of vertebrates, but there is little information on the nature and quantity of pollutants occurring in typical amphibian breeding habitats and on the reproductive capacities of amphibian populations inhabiting polluted areas. In this study we investigated the occurrence and concentrations of endocrine disrupting chemicals in the water and sediment of under-studied amphibian breeding habitats in natural, agricultural and urbanized landscapes. Also, we captured reproductively active common toads (Bufo bufo) from these habitats and let them spawn in a 'common garden' to assess among-population differences in reproductive capacity. Across 12 ponds, we detected 41 out of the 133 contaminants we screened for, with unusually high concentrations of glyphosate and carbamazepine. Levels of polycyclic aromatic hydrocarbons, nonylphenol and bisphenol-A increased with urban land use, whereas levels of organochlorine and triazine pesticides and sex hormones increased with agricultural land use. Toads from all habitats had high fecundity, fertilization rate and offspring viability, but the F1 generation originating from agricultural and urban ponds had reduced development rates and lower body mass both as larvae and as juveniles. Females with small clutch mass produced thicker jelly coat around their eggs if they originated from agricultural and urban ponds compared with natural ponds. These results suggest that the observed pollution levels did not compromise reproductive potential in toads, but individual fitness and population viability may be reduced in anthropogenically influenced habitats, perhaps due to transgenerational effects and/or costs of tolerance to chemical contaminants.


Assuntos
Bufo bufo/fisiologia , Disruptores Endócrinos/análise , Monitoramento Ambiental , Reprodução/efeitos dos fármacos , Águas Residuárias/estatística & dados numéricos , Poluentes Químicos da Água/análise , Agricultura , Animais , Cruzamento , Cidades , Ecossistema , Disruptores Endócrinos/toxicidade , Feminino , Praguicidas/análise , Lagoas , Saúde Reprodutiva , Águas Residuárias/análise , Poluentes Químicos da Água/toxicidade
7.
BMC Evol Biol ; 17(1): 137, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28610604

RESUMO

BACKGROUND: Chemical defences are widespread in animals, but how their production is adjusted to ecological conditions is poorly known. Optimal defence theory predicts that inducible defences are favoured over constitutive defences when toxin production is costly and the need for it varies across environments. However, if some environmental changes occur predictably (e.g. coupled to transitions during ontogeny), whereas others are unpredictable (e.g. predation, food availability), changes in defences may have constitutive as well as plastic elements. To investigate this phenomenon, we raised common toad (Bufo bufo) tadpoles with ad libitum or limited food and in the presence or absence of chemical cues on predation risk, and measured their toxin content on 5 occasions during early ontogeny. RESULTS: The number of compounds showed limited variation with age in tadpoles and was unaffected by food limitation and predator cues. The total amount of bufadienolides first increased and later decreased during development, and it was elevated in young and mid-aged tadpoles with limited food availability compared to their ad libitum fed conspecifics, whereas it did not change in response to cues on predation risk. We provide the first evidence for the active synthesis of defensive toxin compounds this early during ontogeny in amphibians. Furthermore, the observation of increased quantities of bufadienolides in food-restricted tadpoles is the first experimental demonstration of resource-dependent induction of elevated de novo toxin production, suggesting a role for bufadienolides in allelopathy. CONCLUSIONS: Our study shows that the evolution of phenotypic plasticity in chemical defences may depend on the ecological context (i.e. predation vs. competition). Our results furthermore suggest that the age-dependent changes in the diversity of toxin compounds in developing toads may be fixed (i.e., constitutive), timed for the developmental stages in which they are most reliant on their chemical arsenal, whereas inducible plasticity may prevail in the amount of synthesized compounds.


Assuntos
Aminas Biogênicas/análise , Bufanolídeos/análise , Bufonidae/fisiologia , Toxinas Biológicas/análise , Animais , Bufonidae/crescimento & desenvolvimento , Cadeia Alimentar , Larva/química , Larva/fisiologia
8.
Sci Rep ; 6: 26754, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27229882

RESUMO

Amphibians are the most threatened vertebrates today, experiencing worldwide declines. In recent years considerable effort was invested in exposing the causes of these declines. Climate change has been identified as such a cause; however, the expectable effects of predicted milder, shorter winters on hibernation success of temperate-zone Amphibians have remained controversial, mainly due to a lack of controlled experimental studies. Here we present a laboratory experiment, testing the effects of simulated climate change on hibernating juvenile common toads (Bufo bufo). We simulated hibernation conditions by exposing toadlets to current (1.5 °C) or elevated (4.5 °C) hibernation temperatures in combination with current (91 days) or shortened (61 days) hibernation length. We found that a shorter winter and milder hibernation temperature increased survival of toads during hibernation. Furthermore, the increase in temperature and shortening of the cold period had a synergistic positive effect on body mass change during hibernation. Consequently, while climate change may pose severe challenges for amphibians of the temperate zone during their activity period, the negative effects may be dampened by shorter and milder winters experienced during hibernation.


Assuntos
Bufo bufo/fisiologia , Mudança Climática , Hibernação , Animais , Taxa de Sobrevida , Temperatura
9.
J Chem Ecol ; 42(4): 329-38, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27059330

RESUMO

Defensive toxins are widespread in nature, yet we know little about how various environmental factors shape the evolution of chemical defense, especially in vertebrates. In this study we investigated the natural variation in the amount and composition of bufadienolide toxins, and the relative importance of ecological factors in predicting that variation, in larvae of the common toad, Bufo bufo, an amphibian that produces toxins de novo. We found that tadpoles' toxin content varied markedly among populations, and the number of compounds per tadpole also differed between two geographical regions. The most consistent predictor of toxicity was the strength of competition, indicating that tadpoles produced more compounds and larger amounts of toxins when coexisting with more competitors. Additionally, tadpoles tended to contain larger concentrations of bufadienolides in ponds that were less prone to desiccation, suggesting that the costs of toxin production can only be afforded by tadpoles that do not need to drastically speed up their development. Interestingly, this trade-off was not alleviated by higher food abundance, as periphyton biomass had negligible effect on chemical defense. Even more surprisingly, we found no evidence that higher predation risk enhances chemical defenses, suggesting that low predictability of predation risk and high mortality cost of low toxicity might select for constitutive expression of chemical defense irrespective of the actual level of predation risk. Our findings highlight that the variation in chemical defense may be influenced by environmental heterogeneity in both the need for, and constraints on, toxicity as predicted by optimal defense theory.


Assuntos
Bufo bufo/fisiologia , Meio Ambiente , Larva/química , Larva/fisiologia , Animais , Biomassa , Bufanolídeos/análise , Bufanolídeos/química , Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...