Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265660

RESUMO

BackgroundGovernments around the world have implemented non-pharmaceutical interventions to limit the transmission of COVID-19. While lockdowns and physical distancing have proven effective for reducing COVID-19 transmission, there is still limited understanding of how NPI measures are reflected in indicators of human mobility. Further, there is a lack of understanding about how findings from high-income settings correspond to low and middle-income contexts. MethodsIn this study, we assess the relationship between indicators of human mobility, NPIs, and estimates of Rt, a real-time measure of the intensity of COVID-19 transmission. We construct a multilevel generalised linear mixed model, combining local disease surveillance data from subnational districts of Ghana with the timing of NPIs and indicators of human mobility from Google and Vodafone Ghana. FindingsWe observe a relationship between reductions in human mobility and decreases in Rt during the early stages of the COVID-19 epidemic in Ghana. We find that the strength of this relationship varies through time, decreasing after the most stringent period of interventions in the early epidemic. InterpretationOur findings demonstrate how the association of NPI and mobility indicators with COVID-19 transmission may vary through time. Further, we demonstrate the utility of combining local disease surveillance data with large scale human mobility data to augment existing surveillance capacity and monitor the impact of NPI policies. Research in ContextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed and preprint archives for articles published in English that contained information about the COVID-19 pandemic published up to Nov 1, 2021, using the search terms "coronavirus", "CoV", "COVID-19", "mobility", "movement", and "flow". The data thus far suggests that NPI measures including physical distancing, reduction of travel, and use of personal protective equipment have been demonstrated to reduce COVID-19 transmission. Much of the existing research focuses on comparisons of NPI stringency with COVID-19 transmission among different high-income countries, or on high-income countries, leaving critical questions about the applicability of these findings to low- and middle-income settings. Added value of this studyWe used a detailed COVID-19 surveillance dataset from Ghana, and unique high resolution spatial data on human mobility from Vodafone Ghana as well as Google smartphone GPS location data. We show how human mobility and NPI stringency were associated with changes in the effective reproduction number (Rt). We further demonstrate how this association was strongest in the early COVID-19 outbreak in Ghana, decreasing after the relaxation of national restrictions. Implications of all the available evidenceThe change in association between human mobility, NPI stringency, and Rt may reflect a "decoupling" of NPI stringency and human mobility from disease transmission in Ghana as the COVID-19 epidemic progressed. This finding provides public health decision makers with important insights for the understanding of the utility of mobility data for predicting the spread of COVID-19.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260272

RESUMO

BackgroundCountries in the World Health Organization (WHO) European Region differ in terms of the COVID-19 vaccine roll-out speed. We evaluated the health and economic impact of different age-based vaccine prioritisation strategies across this demographically and socio-economically diverse region. MethodsWe fitted country-specific age-stratified compartmental transmission models to reported COVID-19 mortality in the WHO European Region to inform the immunity level before vaccine roll-out. Building upon broad recommendations from the WHO Strategic Advisory Group of Experts on Immunisation (SAGE), we examined four strategies that prioritise: all adults (V+), younger (20-59 year-olds) followed by older adults (60+) (V20), older followed by younger adults (V60), and the oldest adults (75+) (V75) followed by incremental expansion to successively younger five-year age groups. We explored four roll-out scenarios based on projections or recent observations (R1-4) - the slowest scenario (R1) covers 30% of the total population by December 2022 and the fastest (R4) 80% by December 2021. Five decision-making metrics were summarised over 2021-22: mortality, morbidity, and losses in comorbidity-adjusted life expectancy (cLE), comorbidity- and quality-adjusted life years (cQALY), and the value of human capital (HC). Six sets of infection-blocking and disease-reducing vaccine efficacies were considered. FindingsThe optimal age-based vaccine prioritisation strategies were sensitive to country characteristics, decision-making metrics and roll-out speeds. Overall, V60 consistently performed better than or comparably to V75. There were greater benefits in prioritising older adults when roll-out is slow and when VE is low. Under faster roll-out, V+ was the most desirable option. InterpretationA prioritisation strategy involving more age-based stages (V75) does not necessarily lead to better health and economic outcomes than targeting broad age groups (V60). Countries expecting a slow vaccine roll-out may particularly benefit from prioritising older adults. FundingWorld Health Organization, Bill and Melinda Gates Foundation, the Medical Research Council (United Kingdom), the National Institute of Health Research (United Kingdom), the European Commission, the Foreign, Commonwealth and Development Office (United Kingdom), Wellcome Trust Research in ContextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed and medRxiv for articles published in English from inception to 9 Jun 2021, with the search terms: ("COVID-19" OR "SARS-CoV-2") AND ("priorit*) AND ("model*") AND ("vaccin*") and identified 66 studies on vaccine prioritization strategies. Of the 25 studies that compared two or more age-based prioritisation strategies, 12 found that targeting younger adults minimised infections while targeting older adults minimised mortality; an additional handful of studies found similar outcomes between different age-based prioritisation strategies where large outbreaks had already occurred. However, only two studies have explored age-based vaccine prioritisation using models calibrated to observed outbreaks in more than one country, and no study has explored the effectiveness of vaccine prioritisation strategies across settings with different population structures, contact patterns, and outbreak history. Added-value of this studyWe evaluated various age-based vaccine prioritisation strategies for 38 countries in the WHO European Region using various health and economic outcomes for decision-making, by parameterising models using observed outbreak history, known epidemiologic and vaccine characteristics, and a range of realistic vaccine roll-out scenarios. We showed that while targeting older adults was generally advantageous, broadly targeting everyone above 60 years might perform better than or comparably to a more detailed strategy that targeted the oldest age group above 75 years followed by those in the next younger five-year age band. Rapid vaccine roll-out has only been observed in a small number of countries. If vaccine coverage can reach 80% by the end of 2021, prioritising older adults may not be optimal in terms of health and economic impact. Lower vaccine efficacy was associated with greater relative benefits only under relatively slow roll-out scenarios considered. Implication of all the available evidenceCOVID-19 vaccine prioritization strategies that require more precise targeting of individuals of a specific and narrow age range may not necessarily lead to better outcomes compared to strategies that prioritise populations across broader age ranges. In the WHO European Region, prioritising all adults equally or younger adults first will only optimise health and economic impact when roll-out is rapid, which may raise between-country equity issues given the global demand for COVID-19 vaccines.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259336

RESUMO

Mobility data have demonstrated major changes in human movement patterns in response to COVID-19 and associated interventions in many countries. This can involve sub-national redistribution, short-term relocations as well as international migration. In this paper, we combine detailed location data from Facebook measuring the location of approximately 6 million daily active Facebook users in 5km2 tiles in the UK with census-derived population estimates to measure population mobility and redistribution. We provide time-varying population estimates and assess spatial population changes with respect to population density and four key reference dates in 2020 (First lockdown, End of term, Beginning of term, Christmas). We also show how population estimates derived from the distribution of Facebook users vary compared to mid-2020 small area population estimates by the UK national statistics agencies. We estimate that between March 2020 and March 2021, the total population of the UK declined and we identify important spatial variations in this population change, showing that low-density areas have experienced lower population decreases than urban areas. We estimate that, for the top 10% highest population tiles, the population has decreased by 6.6%. Further, we provide evidence that geographic redistributions of population within the UK coincide with dates of non-pharmaceutical interventions including lockdowns and movement restrictions, as well as seasonal patterns of migration around holiday dates. The methods used in this study reveal significant changes in population distribution at high spatial and temporal resolutions that have not previously been quantified by available demographic surveys in the UK. We found early indicators of potential longer-term changes in the population distribution of the UK although it is not clear if these changes may persist after the COVID-19 pandemic.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20219550

RESUMO

BackgroundIn 2020, the UK enacted an intensive, nationwide lockdown on March 23 to mitigate transmission of COVID-19. As restrictions began to ease, resurgences in transmission were targeted by geographically-limited interventions of various stringencies. Understanding the spatial scale of networks of human interaction, and how these networks change over time, is critical to inform interventions targeted at the most at-risk areas without unnecessarily restricting areas at low risk of resurgence. MethodsWe use detailed human mobility data aggregated from Facebook users to determine how the spatially-explicit network of movements changed before and during the lockdown period, in response to the easing of restrictions, and to the introduction of locally-targeted interventions. We also apply community detection techniques to the weighted, directed network of movements to identify geographically-explicit movement communities and measure the evolution of these community structures through time. FindingsWe found that the mobility network became more sparse and the number of mobility communities decreased under the national lockdown, a change that disproportionately affected long distance journeys central to the mobility network. We also found that the community structure of areas in which locally-targeted interventions were implemented following epidemic resurgence did not show reorganization of community structure but did show small decreases in indicators of travel outside of local areas. InterpretationWe propose that communities detected using Facebook or other mobility data be used to assess the impact of spatially-targeted restrictions and may inform policymakers about the spatial extent of human movement patterns in the UK. These data are available in near real-time, allowing quantification of changes in the distribution of the population across the UK, as well as changes in travel patterns to inform our understanding of the impact of geographically-targeted interventions. Putting Research Into ContextO_ST_ABSEvidence before this studyC_ST_ABSLarge-scale intensive interventions in response to the COVID-19 pandemic have been implemented globally, significantly affecting human movement patterns. Mobility data show spatially-explicit network structure, but it is not clear how that structure changed in response to national or locally-targeted interventions. Added value of this studyWe used daily mobility data aggregated from Facebook users to quantify changes in the travel network in the UK during the national lockdown, and in response to local interventions. We identified changes in human behaviour in response to interventions and identified the community structure inherent in these networks. This approach to understanding changes in the travel network can help quantify the extent of strongly connected communities of interaction and their relationship to the extent of spatially-explicit interventions. Implications of all the available evidenceWe show that spatial mobility data available in near real-time can give information on connectivity that can be used to understand the impact of geographically-targeted interventions and in the future, to inform spatially-targeted intervention strategies. Data SharingData used in this study are available from the Facebook Data for Good Partner Program by application. Code and supplementary information for this paper are available online (https://github.com/hamishgibbs/facebook_mobility_uk), alongside publication.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20181198

RESUMO

BackgroundThe COVID-19 pandemic has disrupted routine measles immunisation and supplementary immunisation activities (SIAs) in most countries including Kenya. We assessed the risk of measles outbreaks during the pandemic in Kenya as a case study for the African Region. MethodsCombining measles serological data, local contact patterns, and vaccination coverage into a cohort model, we predicted the age-adjusted population immunity in Kenya and estimated the probability of outbreaks when contact-reducing COVID-19 interventions are lifted. We considered various scenarios for reduced measles vaccination coverage from April 2020. FindingsIn February 2020, when a scheduled SIA was postponed, population immunity was close to the herd immunity threshold and the probability of a large outbreak was 22% (0-46). As the COVID-19 restrictions to physical contact are lifted, from December 2020, the probability of a large measles outbreak increased to 31% (8-51), 35% (16-52) and 43% (31-56) assuming a 15%, 50% and 100% reduction in measles vaccination coverage. By December 2021, this risk increases further to 37% (17-54), 44% (29-57) and 57% (48-65) for the same coverage scenarios respectively. However, the increased risk of a measles outbreak following the lifting of restrictions on contact can be overcome by conducting an SIA with [≥] 95% coverage in under-fives. InterpretationWhile contact restrictions sufficient for SAR-CoV-2 control temporarily reduce measles transmissibility and the risk of an outbreak from a measles immunity gap, this risk rises rapidly once physical distancing is relaxed. Implementing delayed SIAs will be critical for prevention of measles outbreaks once contact restrictions are fully lifted in Kenya. FundingThe United Kingdoms Medical Research Council and the Department for International Development

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20106278

RESUMO

BackgroundNational immunisation programmes globally are at risk of suspension due to the severe health system constraints and physical distancing measures in place to mitigate the ongoing COVID-19 pandemic. Our aim is to compare the health benefits of sustaining routine childhood immunisation in Africa against the risk of acquiring SARS-CoV-2 infections through visiting routine vaccination service delivery points. MethodsWe used two scenarios to approximate the child deaths that may be caused by immunisation coverage reductions during COVID-19 outbreaks. First, we used previously reported country-specific child mortality impact estimates of childhood immunisation for diphtheria, tetanus, pertussis, hepatitis B, Haemophilus influenzae type b, pneumococcal, rotavirus, measles, meningitis A, rubella, and yellow fever (DTP3, HepB3, Hib3, PCV3, RotaC, MCV1, MCV2, MenA, RCV, YFV) to approximate the future deaths averted before completing five years of age by routine childhood vaccination during a 6-month COVID-19 risk period without catch-up campaigns. Second, we analysed an alternative scenario that approximates the health benefits of sustaining routine childhood immunisation to only the child deaths averted from measles outbreaks during the COVID-19 risk period. The excess number of infections due to additional SARS-CoV-2 exposure during immunisation visits assumes that contact reducing interventions flatten the outbreak curve during the COVID-19 risk period, that 60% of the population will have been infected by the end of that period, that children can be infected by either vaccinators or during transport and that upon child infection the whole household would be infected. Country specific household age structure estimates and age dependent infection fatality rates are then applied to calculate the number of deaths attributable to the vaccination clinic visits. We present benefit-risk ratios for routine childhood immunisation alongside 95% uncertainty range estimates from probabilistic sensitivity analysis. FindingsFor every one excess COVID-19 death attributable to SARS-CoV-2 infections acquired during routine vaccination clinic visits, there could be 84 (14-267) deaths in children prevented by sustaining routine childhood immunisation in Africa. The benefit-risk ratio for the vaccinated children, siblings, parents or adult care-givers, and older adults in the households of vaccinated children are 85,000 (4,900 - 546,000), 75,000 (4,400 - 483,000), 769 (148 - 2,700), and 96 (14 - 307) respectively. In the alternative scenario that approximates the health benefits to only the child deaths averted from measles outbreaks, the benefit-risk ratio to the households of vaccinated children is 3 (0 - 10) under these highly conservative assumptions and if the risk to only the vaccinated children is considered, the benefit-risk ratio is 3,000 (182 - 21,000). InterpretationOur analysis suggests that the health benefits of deaths prevented by sustaining routine childhood immunisation in Africa far outweighs the excess risk of COVID-19 deaths associated with vaccination clinic visits, especially for the vaccinated children. However, there are other factors that must be considered for strategic decision making to sustain routine childhood immunisation in African countries during the COVID-19 pandemic. These include logistical constraints of vaccine supply chain problems caused by the COVID-19 pandemic, reallocation of immunisation providers to other prioritised health services, healthcare staff shortages caused by SARS-CoV-2 infections among the staff, decreased demand for vaccination arising from community reluctance to visit vaccination clinics for fear of contracting SARS-CoV-2 infections, and infection risk to healthcare staff providing immunisation services as well as to their households and onward SARS-CoV-2 transmission into the wider community. FundingGavi, the Vaccine Alliance and Bill & Melinda Gates Foundation (OPP1157270) Research in contextO_ST_ABSEvidence before the studyC_ST_ABSNational immunisation programmes globally are at risk of disruption due to the severe health system constraints caused by the ongoing COVID-19 pandemic and the physical distancing measures to mitigate the outbreak. The decrease in vaccination coverage increases the proportion of susceptible children at risk of increased morbidity and mortality from vaccine-preventable disease outbreaks. Outbreaks of vaccine preventable disease have been observed during previous interruptions to routine immunisation services during an ongoing infectious disease epidemic, such as during the 2013-2016 Ebola outbreak in West Africa, when most health resources were shifted towards the Ebola response which led to decreasing vaccination coverage and consequently outbreaks of measles and other vaccine-preventable diseases. Added value of this studyWe estimated the benefit-risk ratio by comparing the deaths prevented by sustaining routine childhood immunisation for diphtheria, tetanus, pertussis, hepatitis B, Haemophilus influenzae type b, pneumococcal, rotavirus, measles, meningitis A, rubella, and yellow fever vaccines with the excess COVID-19 deaths associated with vaccination clinic visits. The benefit of routine childhood immunization programmes in all the 54 countries of Africa is higher than the COVID-19 risk associated with these vaccination clinic visits. Implications of all the available evidenceRoutine childhood immunisation programmes should be safeguarded for continued service delivery and prioritised for the prevention of infectious diseases, as logistically possible, as part of delivering essential health services during the COVID-19 pandemic in Africa. The current immunisation service models will require adaptation, including physical distancing measures, personal protective equipment, and good hygiene practices for infection control at the vaccination clinics, and have to be complemented by new immunisation service models for sustaining routine childhood immunisation in the African countries during the COVID-19 risk period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...