Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4820, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563109

RESUMO

While cell division is essential for self-renewal and differentiation of stem cells and progenitors, dormancy is required to maintain the structure and function of the stem-cell niche. Here we use the hair follicle to show that during growth, the mesenchymal niche of the hair follicle, the dermal papilla (DP), is maintained quiescent by the activity of Hdac1 and Hdac2 in the DP that suppresses the expression of cell-cycle genes. Furthermore, Hdac1 and Hdac2 in the DP promote the survival of DP cells throughout the hair cycle. While during growth and regression this includes downregulation of p53 activity and the control of p53-independent programs, during quiescence, this predominantly involves p53-independent mechanisms. Remarkably, Hdac1 and Hdac2 in the DP during the growth phase also participate in orchestrating the hair cycle clock by maintaining physiological levels of Wnt signaling in the vicinity of the DP. Our findings not only provide insight into the molecular mechanism that sustains the function of the stem-cell niche in a persistently changing microenvironment, but also unveil that the same mechanism provides a molecular toolbox allowing the DP to affect and fine tune the microenvironment.


Assuntos
Folículo Piloso , Proteína Supressora de Tumor p53 , Folículo Piloso/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt/genética , Células-Tronco/metabolismo , Divisão Celular
2.
J Invest Dermatol ; 141(12): 2797-2807.e6, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34166673

RESUMO

The mesenchymal components of the hair follicle-the dermal papilla (DP) and dermal sheath (DS)-are maintained by hair follicle dermal stem cells, but the position of this stem cell population throughout the hair cycle, its contribution to the maintenance of the dermis, and the existence of a migratory axis from the DP to the dermis remain unclear. In this study, we show that during homeostasis DP and DS cells are confined to their compartments, and during the regression phase of the hair cycle, some DP/DS cells undergo apoptosis and subsequently are internalized by nearby adipocytes. In contrast, during wound healing, DP/DS cells move toward the wound but do not directly participate in follicle neogenesis. Furthermore, hair follicle dermal stem cells, driving the cyclic renewal of the DS during the hair cycle, are heterogeneous and are housed during the growth phase within the most proximal part of the DS. Our analysis provides insight into the mechanisms of tissue maintenance and reveals a potential function of adipocytes in phagocytosis.


Assuntos
Actinas/análise , Folículo Piloso/citologia , Homeostase , Células-Tronco Mesenquimais/fisiologia , Cicatrização/fisiologia , Adipócitos/fisiologia , Animais , Apoptose , Camundongos , Músculo Liso/química , Serina Endopeptidases/análise
3.
Nat Commun ; 11(1): 5114, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037205

RESUMO

Tissue growth in the adult is an orchestrated process that often requires biological clocks to time stem cell and progenitor activity. Here, we employed the hair follicle, which cycles between growth and regression in a timely-restricted mode, to show that some components of the hair cycle clock reside within the mesenchymal niche of the hair follicle, the dermal papilla (DP), and both Fgf and Wnt signaling pathways interact within the DP to regulate the expression of these components that include Wnt agonists (Rspondins) and antagonists (Dkk2 and Notum). The levels of Wnt agonists and antagonists in the DP are progressively reduced and elevated during the growth phase, respectively. Consequently, Wnt signaling activity in the overlying epithelial progenitor cells decreases, resulting in the induction of the regression phase. Remarkably, DP properties allow Wnt activity in the DP to persist despite the Wnt-inhibiting milieu and consequently synchronize the induction and progression of the regression phase. This study provides insight into the importance of signaling crosstalk in coupling progenitors and their niche to regulate tissue growth.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Folículo Piloso/citologia , Folículo Piloso/crescimento & desenvolvimento , Via de Sinalização Wnt/fisiologia , Animais , Esterases/genética , Esterases/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Knockout , Camundongos Mutantes , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Pele/citologia , Trombospondinas/genética , Trombospondinas/metabolismo
5.
Cell Rep ; 24(4): 909-921.e3, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30044987

RESUMO

The mechanisms by which stem cell (SC) quiescence is regulated to allow normal regeneration are poorly understood. Here, we show that the mesenchymal niche of the hair follicle, the dermal papilla (DP), governs the properties of quiescent SCs in the bulge despite its relatively distant location. The DP induces regeneration by downregulating bulge-dependent inhibitory effects that restrain the intrinsic proliferation features of primed progenitors. Once regeneration initiates, the DP orchestrates Shh expression in primed-progenitor descendants by an autoregulatory circuit to restrict Shh expression to the DP vicinity and to confine Shh levels to act only on nearby cells. As the DP moves away from the bulge, quiescent SCs are exposed to Shh transiently. This ensures a short period of quiescent SC activation required for normal regeneration. Furthermore, our findings show that Shh signaling in the DP fine-tunes Wnt signaling activity and reveal the importance of signaling cross talk in coordinating regeneration pace.


Assuntos
Folículo Piloso/citologia , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco , Células-Tronco/citologia , Animais , Feminino , Folículo Piloso/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regeneração , Transdução de Sinais , Células-Tronco/metabolismo , Via de Sinalização Wnt , Proteína Wnt-5a/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-22919642

RESUMO

Some bacterial toxins and viruses have evolved the capacity to bind mammalian glycosphingolipids to gain access to the cell interior, where they can co-opt the endogenous mechanisms of cellular trafficking and protein translocation machinery to cause toxicity. Cholera toxin (CT) is one of the best-studied examples, and is the virulence factor responsible for massive secretory diarrhea seen in cholera. CT enters host cells by binding to monosialotetrahexosylganglioside (GM1 gangliosides) at the plasma membrane where it is transported retrograde through the trans-Golgi network (TGN) into the endoplasmic reticulum (ER). In the ER, a portion of CT, the CT-A1 polypeptide, is unfolded and then "retro-translocated" to the cytosol by hijacking components of the ER associated degradation pathway (ERAD) for misfolded proteins. CT-A1 rapidly refolds in the cytosol, thus avoiding degradation by the proteasome and inducing toxicity. Here, we highlight recent advances in our understanding of how the bacterial AB(5) toxins induce disease. We highlight the molecular mechanisms by which these toxins use glycosphingolipid to traffic within cells, with special attention to how the cell senses and sorts the lipid receptors. We also discuss several new studies that address the mechanisms of toxin unfolding in the ER and the mechanisms of CT A1-chain retro-translocation to the cytosol.


Assuntos
Toxinas Bacterianas/metabolismo , Glicoesfingolipídeos/metabolismo , Animais , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Células Eucarióticas/metabolismo , Complexo de Golgi/metabolismo , Humanos , Mamíferos , Ligação Proteica , Transporte Proteico
7.
Mol Biol Cell ; 22(13): 2409-21, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21551070

RESUMO

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase protein localized to regions called focal adhesions, which are contact points between cells and the extracellular matrix. FAK protein acts as a scaffold to transfer adhesion-dependent and growth factor signals into the cell. Increased FAK expression is linked to aggressive metastatic and invasive tumors. However, little is known about its normal embryonic function. FAK protein knockdown during early Xenopus laevis development anteriorizes the embryo. Morphant embryos express increased levels of anterior neural markers, with reciprocally reduced posterior neural marker expression. Posterior neural plate folding and convergence-extension is also inhibited. This anteriorized phenotype resembles that of embryos knocked down zygotically for canonical Wnt signaling. FAK and Wnt3a genes are both expressed in the neural plate, and Wnt3a expression is FAK dependent. Ectopic Wnt expression rescues this FAK morphant anteriorized phenotype. Wnt3a thus acts downstream of FAK to balance anterior-posterior cell fate specification in the developing neural plate. Wnt3a gene expression is also FAK dependent in human breast cancer cells, suggesting that this FAK-Wnt linkage is highly conserved. This unique observation connects the FAK- and Wnt-signaling pathways, both of which act to promote cancer when aberrantly activated in mammalian cells.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/genética , Adesões Focais/metabolismo , Placa Neural/crescimento & desenvolvimento , Proteína Wnt3/biossíntese , Proteína Wnt3/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Placa Neural/metabolismo , Fenótipo , Ligação Proteica , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/genética , Transdução de Sinais , Xenopus/embriologia , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
8.
Dev Dyn ; 239(11): 2980-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20925124

RESUMO

Kupffer's vesicle (KV), a ciliated fluid-filled sphere in the zebrafish embryo with a critical role in laterality determination, is derived from a group of superficial cells in the organizer region of the gastrula named the dorsal forerunner cells (DFC). We have examined the role of the expression of sox17 and chordin (chd) in the DFC in KV formation and laterality determination. Whereas sox17 was known to be expressed in DFC, its function in these cells was not studied before. Further, expression of chd in these cells has not been reported previously. Targeted knockdown of Sox17 and Chd in DFC led to aberrant Left-Right (L-R) asymmetry establishment, as visualized by the expression of southpaw and lefty, and heart and pancreas placement in the embryo. These defects correlated with the formation of small KVs with apparently diminished cilia, consistent with the known requirement for ciliary function in the laterality organ for the establishment of L-R asymmetry.


Assuntos
Líquidos Corporais/metabolismo , Padronização Corporal/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição SOXF/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glicoproteínas/genética , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXF/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
9.
Dev Dyn ; 238(7): 1813-26, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19504458

RESUMO

The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pace maker. Here, we have used microarray technology to study the zebrafish pineal transcriptome. Analysis of gene expression at three larval and two adult stages revealed a highly dynamic transcriptional profile, revealing many genes that are highly expressed in the zebrafish pineal gland. Statistical analysis of the data based on Gene Ontology annotation indicates that many transcription factors are highly expressed during larval stages, whereas genes dedicated to phototransduction are preferentially expressed in the adult. Furthermore, several genes were identified that exhibit day/night differences in expression. Among the multiple candidate genes suggested by these data, we note the identification of a tissue-specific form of the unc119 gene with a possible role in pineal development.


Assuntos
Perfilação da Expressão Gênica , Glândula Pineal/metabolismo , Peixe-Zebra/genética , Animais , Encéfalo/metabolismo , Ritmo Circadiano/genética , Análise por Conglomerados , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Fotoperíodo , Glândula Pineal/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia
10.
Int J Dev Biol ; 52(7): 985-91, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18956329

RESUMO

In this report, we present the isolation and identification of a zebrafish homolog of the winged helix\forkhead transcription factor Foxj1. Foxj1 was identified in other species but not in zebrafish. Foxj1 was shown in mice to be required in ciliogenesis and left-right asymmetry establishment. Here we present a spatio-temporal expression pattern of zebrafish foxj1, showing that this gene is expressed in dorsal forerunner cells, Kupffers vesicle, the floor plate, pronephric ducts and kidney. This expression pattern is overlapping but different from that of the foxj1.2, the closest related gene in zebrafish. Foxj1 in zebrafish appears to have similar functions as those reported in other species connected to ciliogenesis and left-right asymmetry.


Assuntos
Fatores de Transcrição Forkhead/genética , Expressão Gênica , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Cílios/metabolismo , Embrião não Mamífero , Fatores de Transcrição Forkhead/metabolismo , Hibridização In Situ , Fatores de Determinação Direita-Esquerda , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
11.
Dev Biol ; 318(2): 335-46, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18468594

RESUMO

Protocadherin-18a (Pcdh18a) belongs to the delta 2-protocadherins, which constitute the largest subgroup within the cadherin superfamily. Here we present isolation of a full-length zebrafish cDNA that encodes a protein highly similar to human and mouse Pcdh18. Zebrafish pcdh18a is expressed in a complex and dynamic pattern in the nervous system from gastrula stages onward, with lesser expression in mesodermal derivatives. Pcdh18a-eGFP fusion protein is expressed in a punctate manner on the membranes between cells. Overexpression of pcdh18a in embryos caused cyclopia, mislocalization of hatching gland tissue, and duplication or splitting of the neural tube. Most neural markers tested were expressed in an approximately correct A-P pattern. By cell transplantation we showed that overexpression of pcdh18a causes diminished cell migration and reduced cell protrusions, resulting in a tendency of cells to stay more firmly aggregated, probably due to increased cell adhesion. In contrast, knockdown of pcdh18a by a morpholino oligonucleotide caused defects in epiboly, and led to reduced cell adhesion as shown by cell dissociation, sorting and transplantation experiments. These results suggest a role for Pcdh18a in cell adhesion, migration and behavior but not cell specification during gastrula and segmentation stages of development.


Assuntos
Caderinas/metabolismo , Comunicação Celular , Movimento Celular , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Caderinas/genética , Adesão Celular , Embrião não Mamífero/metabolismo , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Protocaderinas , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
12.
Development ; 131(1): 153-63, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14660437

RESUMO

Knockdown studies in Xenopus demonstrated that the XMeis3 gene is required for proper hindbrain formation. An explant assay was developed to distinguish between autonomous and inductive activities of XMeis3 protein. Animal cap explants caudalized by XMeis3 were recombined with explants neuralized by the BMP dominant-negative receptor protein. XMeis3-expressing cells induced convergent extension cell elongations in juxtaposed neuralized explants. Elongated explants expressed hindbrain and primary neuron markers, and anterior neural marker expression was extinguished. Cell elongation was dependent on FGF/MAP-kinase and Wnt-PCP activities. XMeis3 activates FGF/MAP-kinase signaling, which then modulates the PCP pathway. In this manner, XMeis3 protein establishes a hindbrain-inducing center that determines anteroposterior patterning in the brain.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Rombencéfalo/embriologia , Xenopus/embriologia , Animais , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/fisiologia , Embrião não Mamífero/fisiologia , Feminino , Fertilização in vitro , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Homeodomínio/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Ovulação , Proteínas de Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...