Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 13(2 Pt 1): 591-602, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17255282

RESUMO

PURPOSE: Chk1 kinase is a critical regulator of both S and G(2)-M phase cell cycle checkpoints in response to DNA damage. This study aimed to evaluate the biochemical, cellular, and antitumor effects of a novel Chk1 inhibitor, CHIR124. EXPERIMENTAL DESIGN: CHIR-124 was evaluated for its ability to abrogate cell cycle checkpoints, to potentiate cytotoxicity, and to inhibit Chk1-mediated signaling induced by topoisomerase I poisons in human tumor cell line and xenograft models. RESULTS: CHIR-124 is a quinolone-based small molecule that is structurally unrelated to other known inhibitors of Chk1. It potently and selectively inhibits Chk1 in vitro (IC(50) = 0.0003 micromol/L). CHIR-124 interacts synergistically with topoisomerase poisons (e.g., camptothecin or SN-38) in causing growth inhibition in several p53-mutant solid tumor cell lines as determined by isobologram or response surface analysis. CHIR-124 abrogates the SN-38-induced S and G(2)-M checkpoints and potentiates apoptosis in MDA-MD-435 breast cancer cells. The abrogation of the G(2)-M checkpoint and induction of apoptosis by CHIR-124 are enhanced by the loss of p53. We have also shown that CHIR-124 treatment can restore the level of cdc25A protein, which is normally targeted by Chk1 for degradation following DNA damage, indicating that Chk1 signaling is suppressed in the presence of CHIR-124. Finally, in an orthotopic breast cancer xenograft model, CHIR-124 potentiates the growth inhibitory effects of irinotecan by abrogating the G(2)-M checkpoint and increasing tumor apoptosis. CONCLUSIONS: CHIR-124 is a novel and potent Chk1 inhibitor with promising antitumor activities when used in combination with topoisomerase I poisons.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Proteínas Quinases/metabolismo , Quinolinas/administração & dosagem , Quinuclidinas/administração & dosagem , Inibidores da Topoisomerase I , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos SCID , Modelos Químicos , Transplante de Neoplasias , Distribuição Aleatória
2.
Biochem Pharmacol ; 73(1): 44-55, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17046720

RESUMO

Tezacitabine is a nucleoside analogue characterized by a dual mechanism of action. Following intracellular phosphorylation, the tezacitabine diphosphate irreversibly inhibits ribonucleotide reductase, while the tezacitabine triphosphate can be incorporated into DNA during replication or repair, resulting in DNA chain termination. In the present study we have investigated the effect of the combination of tezacitabine and 5-fluorouracil (5-FU) or 5-fluoro-2'-deoxyuridine (FUdR) on HCT 116 human colon carcinoma cells and xenografts. We used response surface analysis (RSA) and clonogenic assay to evaluate combination effects of tezacitabine and 5-FU. Tezacitabine is antagonistic when combined with 5-FU in the RSA assay and does not effect the clonogenicity of HCT 116 cells when compared with cells treated with 5-FU alone. However, when combined sequentially with FUdR, tezacitabine leads to potentiation of cell killing in the clonogenic assay, additivity in the RSA assay, and increased apoptosis when compared to FUdR alone, suggesting that cytotoxicity of fluoropyrimidines such as FUdR that have more DNA-directed effects can be potentiated by tezacitabine. We also report that oral administration of the fluoropyrimidine capecitabine, an oral prodrug of 5-FU, in combination with tezacitabine shows statistically significant additivity in the HCT 116 xenograft model. This interaction may be explained by the finding that tezacitabine elevates activity of thymidine phosphorylase (TP), the enzyme required for activation of the capecitabine prodrug in tumors. Our results provide evidence that tezacitabine enhances the DNA-directed effects of fluoropyrimidines in human colon cancer cells and may modulate the antitumor activity of fluoropyrimidines.


Assuntos
Neoplasias do Colo/patologia , DNA/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Floxuridina/farmacologia , Fluoruracila/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/enzimologia , Dano ao DNA , Desoxicitidina/farmacologia , Humanos , Timidina Fosforilase/metabolismo , Timidilato Sintase/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA