Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 16(1): 36-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37749235

RESUMO

Amorphous calcium carbonate is an important precursor for biomineralization in marine organisms. Key outstanding problems include understanding the structure of amorphous calcium carbonate and rationalizing its metastability as an amorphous phase. Here we report high-quality atomistic models of amorphous calcium carbonate generated using state-of-the-art interatomic potentials to help guide fits to X-ray total scattering data. Exploiting a recently developed inversion approach, we extract from these models the effective Ca⋯Ca interaction potential governing the structure. This potential contains minima at two competing distances, corresponding to the two different ways that carbonate ions bridge Ca2+-ion pairs. We reveal an unexpected mapping to the Lennard-Jones-Gauss model normally studied in the context of computational soft matter. The empirical model parameters for amorphous calcium carbonate take values known to promote structural complexity. We thus show that both the complex structure and its resilience to crystallization are actually encoded in the geometrically frustrated effective interactions between Ca2+ ions.

2.
J Chem Phys ; 159(19)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37975484

RESUMO

We derive a hierarchy of equations, which allow a general n-body distribution function to be measured by test-particle insertion of between 1 and n particles. We apply it to measure the pair and three-body distribution functions in a simple fluid using snapshots from Monte Carlo simulations in the grand canonical ensemble. The resulting distribution functions obtained from insertion methods are compared with the conventional distance-histogram method: the insertion approach is shown to overcome the drawbacks of the histogram method, offering enhanced structural resolution and a more straightforward normalization. At high particle densities, the insertion method starts breaking down, which can be delayed by utilizing the underlying hierarchical structure of the insertion method. Our method will be especially useful in characterizing the structure of inhomogeneous fluids and investigating closure approximations in liquid state theory.

3.
Cell Rep ; 42(11): 113375, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37980572

RESUMO

Membraneless organelles, or biomolecular condensates, enable cells to compartmentalize material and processes into unique biochemical environments. While specific, attractive molecular interactions are known to stabilize biomolecular condensates, repulsive interactions, and the balance between these opposing forces, are largely unexplored. Here, we demonstrate that repulsive and attractive electrostatic interactions regulate condensate stability, internal mobility, interfaces, and selective partitioning of molecules both in vitro and in cells. We find that signaling ions, such as calcium, alter repulsions between model Ddx3 and Ddx4 condensate proteins by directly binding to negatively charged amino acid sidechains and effectively inverting their charge, in a manner fundamentally dissimilar to electrostatic screening. Using a polymerization model combined with generalized stickers and spacers, we accurately quantify and predict condensate stability over a wide range of pH, salt concentrations, and amino acid sequences. Our model provides a general quantitative treatment for understanding how charge and ions reversibly control condensate stability.


Assuntos
Organelas , Proteínas , Organelas/metabolismo , Proteínas/metabolismo , DNA Helicases/metabolismo , RNA Helicases DEAD-box/metabolismo , Íons/análise , Íons/metabolismo
4.
Soft Matter ; 19(45): 8706-8716, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37791635

RESUMO

The surface tension of liquid-like protein-rich biomolecular condensates is an emerging physical principle governing the mesoscopic interior organisation of biological cells. In this study, we present a method to evaluate the surface tension of model biomolecular condensates, through straighforward sessile drop measurements of capillary lengths and condensate densities. Our approach bypasses the need for characterizing condensate viscosities, which was required in previously reported techniques. We demonstrate this method using model condensates comprising two mutants of the intrinsically disordered protein Ddx4N. Notably, we uncover a detrimental impact of increased protein net charge on the surface tension of Ddx4N condensates. Furthermore, we explore the application of Scheutjens-Fleer theory, calculating condensate surface tensions through a self-consistent mean-field framework using Flory-Huggins interaction parameters. This relatively simple theory provides semi-quantitative accuracy in predicting Ddx4N condensate surface tensions and enables the evaluation of molecular organisation at condensate surfaces. Our findings shed light on the molecular details of fluid-fluid interfaces in biomolecular condensates.


Assuntos
Condensados Biomoleculares , Veias , Tensão Superficial , Viscosidade
5.
Phys Rev Lett ; 127(19): 198001, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797147

RESUMO

We propose a general formalism to characterize orientational frustration of smectic liquid crystals in confinement by interpreting the emerging networks of grain boundaries as objects with a topological charge. In a formal idealization, this charge is distributed in pointlike units of quarter-integer magnitude, which we identify with tetratic disclinations located at the end points and nodes. This coexisting nematic and tetratic order is analyzed with the help of extensive Monte Carlo simulations for a broad range of two-dimensional confining geometries as well as colloidal experiments, showing how the observed defect networks can be universally reconstructed from simple building blocks. We further find that the curvature of the confining wall determines the anchoring behavior of grain boundaries, such that the number of nodes in the emerging networks and the location of their end points can be tuned by changing the number and smoothness of corners, respectively.

6.
J Chem Phys ; 154(16): 164901, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33940816

RESUMO

We study a two-dimensional system composed by Active Brownian Particles (ABPs), focusing on the onset of Motility Induced Phase Separation (MIPS), by means of molecular dynamics simulations. For a pure hard-disk system with no translational diffusion, the phase diagram would be completely determined by their density and Péclet number. In our model, two additional effects are present: translational noise and the overlap of particles; we study the effects of both in the phase space. As we show, the second effect can be mitigated if we use, instead of the standard Weeks-Chandler-Andersen potential, a stiffer potential: the pseudo-hard sphere potential. Moreover, in determining the boundary of our phase space, we explore different approaches to detect MIPS and conclude that observing dynamical features, via the non-Gaussian parameter, is more efficient than observing structural ones, such as through the local density distribution function. We also demonstrate that the Vogel-Fulcher equation successfully reproduces the decay of the diffusion as a function of density, with the exception of very high densities. Thus, in this regard, the ABP system behaves similar to a fragile glass.

7.
Nat Commun ; 12(1): 623, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504780

RESUMO

Confined samples of liquid crystals are characterized by a variety of topological defects and can be exposed to external constraints such as extreme confinements with nontrivial topology. Here we explore the intrinsic structure of smectic colloidal layers dictated by the interplay between entropy and an imposed external topology. Considering an annular confinement as a basic example, a plethora of competing states is found with nontrivial defect structures ranging from laminar states to multiple smectic domains and arrays of edge dislocations, which we refer to as Shubnikov states in formal analogy to the characteristic of type-II superconductors. Our particle-resolved results, gained by a combination of real-space microscopy of thermal colloidal rods and fundamental-measure-based density functional theory of hard anisotropic bodies, agree on a quantitative level.

8.
Soft Matter ; 17(6): 1480-1486, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33496306

RESUMO

Photo-catalytically active crystalline TiO2 has attracted special attention due to its relevance for renewable energy and is typically obtained by the calcination of amorphous TiO2. However, stabilising hollow colloidal TiO2 particles against aggregation during calcination without compromising their photocatalytic activity poses two conflicting demands: to be stable their surface needs to be coated, while efficient photocatalysis requires an exposed TiO2 surface. Here, this incompatibility is resolved by partially coating TiO2 shells with evenly distributed 3-trimethoxysilyl propyl methacrylate (TPM) lobes. These lobes act both as steric barriers and surface charge enhancers that efficiently stabilise the TiO2 shells against aggregation during calcination. The morphology of the TPM lobes and their coverage, and the associated particle stability during the calcination-induced TiO2 crystallization, can be controlled by the pH and the contact angle between TPM and TiO2. The crystal structure and the grain size of the coated TiO2 shells are controlled by varying the calcination temperature, which allows tuning their photocatalytic activity. Finally, the durable photocatalytic activity over many usage cycles of the coated TiO2 compared to uncoated shells is demonstrated in a simple way by measuring the photo-degradation of a fluorescent dye. Our approach offers a general strategy for stabilising colloidal materials, without compromising access to their active surfaces.

9.
Science ; 369(6506): 950-955, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820121

RESUMO

Understanding the impact of curvature on the self-assembly of elongated microscopic building blocks, such as molecules and proteins, is key to engineering functional materials with predesigned structure. We develop model "banana-shaped" colloidal particles with tunable dimensions and curvature, whose structure and dynamics are accessible at the particle level. By heating initially straight rods made of SU-8 photoresist, we induce a controllable shape deformation that causes the rods to buckle into banana-shaped particles. We elucidate the phase behavior of differently curved colloidal bananas using confocal microscopy. Although highly curved bananas only form isotropic phases, less curved bananas exhibit very rich phase behavior, including biaxial nematic phases, polar and antipolar smectic-like phases, and even the long-predicted, elusive splay-bend nematic phase.

10.
Proc Natl Acad Sci U S A ; 117(9): 4724-4731, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071243

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa is a major cause of antibiotic-tolerant infections in humans. P. aeruginosa evades antibiotics in bacterial biofilms by up-regulating expression of a symbiotic filamentous inoviral prophage, Pf4. We investigated the mechanism of phage-mediated antibiotic tolerance using biochemical reconstitution combined with structural biology and high-resolution cellular imaging. We resolved electron cryomicroscopy atomic structures of Pf4 with and without its linear single-stranded DNA genome, and studied Pf4 assembly into liquid crystalline droplets using optical microscopy and electron cryotomography. By biochemically replicating conditions necessary for antibiotic protection, we found that phage liquid crystalline droplets form phase-separated occlusive compartments around rod-shaped bacteria leading to increased bacterial survival. Encapsulation by these compartments was observed even when inanimate colloidal rods were used to mimic rod-shaped bacteria, suggesting that shape and size complementarity profoundly influences the process. Filamentous inoviruses are pervasive across prokaryotes, and in particular, several Gram-negative bacterial pathogens including Neisseria meningitidis, Vibrio cholerae, and Salmonella enterica harbor these prophages. We propose that biophysical occlusion mediated by secreted filamentous molecules such as Pf4 may be a general strategy of bacterial survival in harsh environments.


Assuntos
Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , DNA Viral/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Capsídeo , Doenças Transmissíveis , Microscopia Crioeletrônica , Farmacorresistência Bacteriana/genética , Genoma Viral , Inovirus/genética , Inovirus/fisiologia , Modelos Moleculares , Neisseria meningitidis , Prófagos/genética , Prófagos/fisiologia , Salmonella enterica , Vibrio cholerae
11.
Chem Sci ; 11(30): 7772-7781, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34094150

RESUMO

Certain pairs of paramagnetic species generated under conservation of total spin angular momentum are known to undergo magnetosensitive processes. Two prominent examples of systems exhibiting these so-called magnetic field effects (MFEs) are photogenerated radical pairs created from either singlet or triplet molecular precursors, and pairs of triplet states generated by singlet fission. Here, we showcase confocal microscopy as a powerful technique for the investigation of such phenomena. We first characterise the instrument by studying the field-sensitive chemistry of two systems in solution: radical pairs formed in a cryptochrome protein and the flavin mononucleotide/hen egg-white lysozyme model system. We then extend these studies to single crystals. Firstly, we report temporally and spatially resolved MFEs in flavin-doped lysozyme single crystals. Anisotropic magnetic field effects are then reported in tetracene single crystals. Finally, we discuss the future applications of confocal microscopy for the study of magnetosensitive processes with a particular focus on the cryptochrome-based chemical compass believed to lie at the heart of animal magnetoreception.

12.
Phys Rev Lett ; 123(9): 098002, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524476

RESUMO

We report a straightforward, model-free approach for measuring pair potentials from particle-coordinate data, based on enforcing consistency between the pair distribution function measured separately by the distance-histogram and test-particle insertion routes. We demonstrate the method's accuracy and versatility in simulations of simple fluids, before applying it to an experimental system composed of superparamagnetic colloidal particles. The method will enable experimental investigations into many-body interactions and allow for effective coarse graining of interactions from simulations.

13.
Phys Rev Lett ; 123(9): 098001, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524482

RESUMO

Switching on high activity in a relatively dense system of active Janus colloids, we observe fast clustering, followed by cluster aggregation towards full phase separation. The phase separation process is however interrupted when large enough clusters start breaking apart. Following the cluster size distribution as a function of time, we identify three successive dynamical regimes. Tracking both the particle positions and orientations, we characterize the structural ordering and alignment in the growing clusters and thereby unveil the mechanisms at play in these regimes. In particular, we identify how alignment between the neighboring particles is responsible for the interruption of the full phase separation. Our large scale quantification of the phase separation kinetics in active colloids points towards the new physics observed when both alignment and short-range repulsions are present.

14.
Soft Matter ; 15(29): 5810-5814, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31304487

RESUMO

We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we relate this behavior to the rotational diffusion of the rods. By constructing the full, three-dimensional, orientation distribution, we describe the rod trajectories and quantify the persistence of Jeffery orbits using temporal correlation functions of the Jeffery constant. We find that our colloidal rods lose memory of their initial configuration in about a second, corresponding to half a Jeffery period.

15.
Adv Mater ; 31(17): e1807514, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30869177

RESUMO

The bulk synthesis of fluorescent colloidal SU-8 polymer rods with tunable dimensions is described. The colloidal SU-8 rods are prepared by shearing an emulsion of SU-8 polymer droplets and then exposing the resulting non-Brownian rods to ultrasonic waves, which breaks them into colloidal rods with typical lengths of 3.5-10 µm and diameters of 0.4-1 µm. The rods are stable in both aqueous and apolar solvents, and by varying the composition of apolar solvent mixtures both the difference in refractive index and mass density between particles and solvent can be independently controlled. Consequently, these colloidal SU-8 rods can be used in both 3D confocal microscopy and optical trapping experiments while carefully tuning the effect of gravity. This is demonstrated by using confocal microscopy to image the liquid crystalline phases and the isotropic-nematic interface formed by the colloidal SU-8 rods and by optically trapping single rods in water. Finally, the simultaneous confocal imaging and optical manipulation of multiple SU-8 rods in the isotropic phase is shown.

16.
Sci Rep ; 9(1): 20391, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892707

RESUMO

When a liquid crystal forming particles are confined to a spatial volume with dimensions comparable to that of their own size, they face a complex trade-off between their global tendency to align and the local constraints imposed by the boundary conditions. This interplay may lead to a non-trivial orientational patterns that strongly depend on the geometry of the confining volume. This novel regime of liquid crystalline behavior can be probed with colloidal particles that are macro-aggregates of biomolecules. Here we study director fields of filamentous fd-viruses in quasi-2D lens-shaped chambers that mimic the shape of tactoids, the nematic droplets that form during isotropic-nematic phase separation. By varying the size and aspect ratio of the chambers we force these particles into confinements that vary from circular to extremely spindle-like shapes and observe the director field using fluorescence microscopy. In the resulting phase diagram, next to configurations predicted earlier for 3D tactoids, we find a number of novel configurations. Using Monte Carlo Simulations, we show that these novel states are metastable, yet long-lived. Their multiplicity can be explained by the co-existence of multiple dynamic relaxation pathways leading to the final stable states.

17.
Soft Matter ; 14(43): 8821-8827, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30346465

RESUMO

Gelation processes grant access to a wealth of soft materials with tailorable properties, in applications as diverse as environmental remediation, biomedicine and electronics. Several classes of self-assembling gelators have been studied and employ non-covalent bonds to direct assembly, but recently attention has come to focus on how the overall shape of the gelator molecule impacts its gelation. Here we study a new sub-family of low molecular weight organogelators and explore how steric rearrangement influences their gelation. The gels produced are characterised with X-ray diffraction and small-angle neutron scattering (SANS) to probe their ex situ and in situ gelation mechanisms. The best examples were then tested for environmental remediation applications, gelling petrol and oils in the presence of water and salts.


Assuntos
Recuperação e Remediação Ambiental , Ureia/química , Carbamatos/química , Géis , Modelos Moleculares , Conformação Molecular , Peso Molecular , Solventes/química
18.
Soft Matter ; 14(35): 7119-7125, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30027982

RESUMO

Colloidal particles with asymmetric catalytic activities are emerging micro/nanomotors that harvest chemical energy for propulsion in fluids. It is of general interest to produce such particles with high performance, in large quantity and at low cost. In this paper, we present a facile bulk method to synthesize silver-head colloidal silica rods. These particles self-propel towards their active sites by reacting with hydrogen peroxide, and the velocity is tuned via the fuel concentration. We show that these motors are highly efficient; compared to the currently available chemical-phoretic micro/nanomotors they show similar performance of self-propulsion at fuel concentrations that are two orders of magnitude smaller.

19.
J Chem Phys ; 148(24): 241102, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960354

RESUMO

We apply Henderson's method for measuring the cavity distribution function y(r) [J. Henderson, Mol. Phys. 48, 389 (1983)] to obtain the pair distribution function at contact, g(σ+). In contrast to the conventional distance-histogram method, no approximate extrapolation to contact is required. The resulting equation of state from experiments and simulations of hard disks agrees well with the scaled particle theory prediction up to high fluid packing fractions. We also provide the first experimental measurement of y(r) inside the hard core, which will allow for a more complete comparison with theory. The method's flexibility is further illustrated by measuring the partial pair distribution functions of binary hard-disk mixtures in simulation. The equation for the contact values can be used to derive familiar results from statistical geometry.

20.
Proc Natl Acad Sci U S A ; 115(27): 6922-6927, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915026

RESUMO

The formation and kinetics of grain boundaries are closely related to the topological constraints imposed on their complex dislocation structure. Loop-shaped grain boundaries are unique structures to establish such a link because their overall topological "charge" is zero due to their null net Burgers vector. Here, we observe that a local rotational deformation of a 2D colloidal crystal with an optical vortex results in a grain boundary loop only if the product of its radius and misorientation exceeds a critical value. Above this value, the deformation is plastic and the grain boundary loop spontaneously shrinks at a rate that solely depends on this product, while otherwise, the deformation is elastically restored. We show that this elastic-to-plastic crossover is a direct consequence of the unique dislocation structure of grain boundary loops. At the critical value, the loop is structurally equivalent to the so-called "flower defect" and the shrinkage rate diverges. Our results thus reveal a general limit on the formation of grain boundary loops in 2D crystals and elucidate the central role of defects in both the onset of plasticity and the kinetics of grain boundaries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...