Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(43): 50657-50667, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34674523

RESUMO

Liquid crystal microdroplets with readily adjustable optical properties have attracted considerable attention for building reconfigurable optofluidic microsystems for sensing, imaging, and light routing applications. In this quest, development of active optical microcavities serving as versatile integrated sources of coherent light and ultra-sensitive environmental sensors has played a prominent role. Here, we study transportable optofluidic microlasers reversibly tunable by an external electric field, which are based on fluorophore-doped emulsion droplets of radial nematic liquid crystals manipulated by optical tweezers in microfluidic chips with embedded liquid electrodes. Full transparency of the electrodes formed by a concentrated electrolyte solution allows for applying an electric field to the optically trapped droplets without undesired heating caused by light absorption. Taking advantage of independent, precise control over the electric and thermal stimulation of the lasing liquid crystal droplets, we characterize their spectral tuning response at various optical trapping powers and study their relaxation upon a sudden decrease in the trapping power. Finally, we demonstrate that sufficiently strong applied electric fields can induce fully reversible phase transitions in the trapped droplets even below the bulk melting temperature of the used liquid crystal. Our observations indicate viability of creating electrically tunable, optically transported microlasers that can be prepared on-demand and operated within microfluidic chips to implement integrated microphotonic or sensing systems.

2.
Chem Commun (Camb) ; 50(82): 12333-6, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25183463

RESUMO

Photochromic fluorescence resonance energy transfer (pcFRET) was used to monitor the redox activity of non-fluorescent heme protein. Venus fluorescent protein was used as a donor where its emission intensity was reversibly modulated by the absorption change of Cytochrome c.


Assuntos
Proteínas de Bactérias/química , Citocromos c/química , Hemeproteínas/química , Proteínas Luminescentes/química , Transferência Ressonante de Energia de Fluorescência/métodos , Oxirredução
3.
Lab Chip ; 14(16): 3093-100, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24968888

RESUMO

Fluorescent proteins are indispensable for selective, quantitative visualization of localization, dynamics, and interactions of key molecular constituents of live cells. Incorporation of fluorescent proteins into an optical cavity can lead to a significant increase in fluorescence signal levels due to stimulated emission and light amplification in the cavity, forming a laser with biological gain medium. Utilization of lasing emission from fluorescent biological molecules can then greatly enhance the performance of fluorescence-based biosensors benefiting from the high sensitivity of non-linear lasing processes to small perturbations in the cavity and the gain medium. Here we study optofluidic biolasers that exploit active liquid optical resonators formed by surface-supported aqueous microdroplets containing purified yellow fluorescent protein or a suspension of live E. coli bacterial cells expressing the fluorescent protein. We first demonstrate lasing in fluorescent protein solutions at concentrations as low as 49 µM. Subsequently, we show that a single fluorescent bacterial cell of micrometre size confined in a droplet-based cavity can serve as a laser gain medium. Aqueous droplet microcavities allow the maintenance of the bacterial cells under conditions compatible with unimpeded growth. Therefore, our results also suggest a direct route to microscopic sources of laser light with self-regenerating gain media.


Assuntos
Proteínas de Bactérias/análise , Proteínas Luminescentes/análise , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Análise Espectral
4.
Opt Express ; 21(18): 21380-94, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24104013

RESUMO

We introduce tunable optofluidic microlasers based on active optical resonant cavities formed by optically stretched, dye-doped emulsion droplets confined in a dual-beam optical trap. To achieve tunable dye lasing, optically pumped droplets of oil dispersed in water are stretched by light in the dual-beam trap. Subsequently, resonant path lengths of whispering gallery modes (WGMs) propagating in the droplet are modified, leading to shifts in the microlaser emission wavelengths. Using this technique, we present all-optical, almost reversible spectral tuning of the lasing WGMs and show that the direction of tuning depends on the position of the pump beam focus on the droplet. In addition, we study the effects of temperature changes on the spectral position of lasing WGMs and demonstrate that droplet heating leads to red-tuning of the droplet lasing wavelength.

5.
Appl Opt ; 48(1): 106-13, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19107179

RESUMO

The fundamental principles of the operation of a thin-disk laser are presented. We derived equations from a set of coupled rate equations that predict that the characteristics of a laser are affected by the Boltzmann occupation factors of the pump and the laser states simultaneously. The model is used to investigate the influence of the effective parameters on the operational efficiency of an end-pumped Yb:YAG disk laser. Based on our results, we examined laser output power as a function of output coupler reflectivity, crystal thickness or doping concentration, number of the pump beam passes, and temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA