Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 106(8-9): 808-14, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16677762

RESUMO

This paper presents mass measurements of glycerine beads performed by means of laterally resonant micro-cantilevers. The transducer architecture is based on a resonant cantilever electrostatically coupled by two parallel placed electrodes. Previous to glycerine measurements, a calibration of the mass sensor has been performed by measuring a standard mass based on latex spheres. From these measurements, a value of the mass responsivity is deduced. In addition, a study of the transducer phase noise has been carried out in order to determine the minimum detectable mass. Mass measurements experiments have been performed by detecting the change on the resonance frequency of the on-plane cantilever resonant mode, produced by locally deposited mass. Additionally, the mass losses detected on the calibrated transducer after glycerine drop deposition allowed determining its evaporation rate.

2.
Ultramicroscopy ; 106(8-9): 800-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16675119

RESUMO

A microcantilever based platform for mass detection in the femtogram range has been integrated in the doped top silicon layer of a SOI substrate. The on-plane fundamental resonance mode of the cantilever is excited electrostatically and detected capacitively by means of two parallel placed electrodes in a two port configuration. An electromechanical model of the cantilever-electrodes transducer and its implementation in a SPICE environment are presented. The model takes into account non-linearities from variable cantilever-electrode gap, fringing field contributions and real deflection shape of the cantilever for the calculation of the driving electrostatic force. A fitting of the model to the measured S(21) transmitted power frequency response is performed to extract the characteristic sensor parameters as Young modulus, Q factor, electrical parasitics and mass responsivity.

3.
Ultramicroscopy ; 100(3-4): 225-32, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15231314

RESUMO

An electromechanical model for a transducer based on a lateral resonating cantilever is described. The on-plane vibrations of the cantilever are excited electrostatically by applying DC and AC voltages from a driver electrode placed closely parallel to the cantilever. The model predicts the static deflection and the frequency response of the oscillation amplitude for different voltage polarization conditions. For the electrostatic force calculation the model takes into account the real deflection shape of the cantilever and the contribution to the cantilever-driver capacitance of the fringing field. Both the static and dynamic predictions have been validated experimentally by measuring the deflection of the cantilever by means of an optical microscope.

4.
Ultramicroscopy ; 97(1-4): 127-33, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12801665

RESUMO

An atomic force microscope (AFM) is used as a nanometer-scale resolution tool for the characterization of the electromechanical behaviour of a resonant cantilever-based mass sensor. The cantilever is actuated electrostatically by applying DC and AC voltages from a driver electrode placed closely parallel to the cantilever. In order to minimize the interaction between AFM probe and the resonating transducer cantilever, the AFM is operated in a dynamic non-contact mode, using oscillation amplitudes corresponding to a low force regime. The dependence of the static cantilever deflection on DC voltage and of the oscillation amplitude on the frequency of the AC voltage is measured by this technique and the results are fitted by a simple non-linear electromechanical model.

5.
Ultramicroscopy ; 97(1-4): 467-72, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12801703

RESUMO

Nanolithography by local anodic oxidation of surfaces using atomic force microscopy (AFM) has proven to be more reproducible when using dynamic, non-contact mode. Hereby, the tip/sample interaction forces are reduced dramatically compared to contact mode, and thus tip wear is greatly reduced. Anodic oxidation of Al can be used for fabricating nanomechanical systems, by using the Al oxide as a highly selective dry etching mask. In our experiments, areas as large as 2 micro m x 3 micro m have been oxidized repeatedly without any sign of tip-wear. Furthermore, line widths down to 10nm have been routinely obtained, by optimization of AFM parameters, such as tip/sample distance, voltage and scan speed. Finally, AFM oxidation experiments have been performed on CMOS processed chips, demonstrating the first steps of fabricating fully functional nanomechanical devices.

6.
Biomaterials ; 23(23): 4515-21, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12322971

RESUMO

The formation and properties of electrochemical platinum films grown on platinum contacts contained in implantable flexible microelectrodes were investigated. The resulting platinum deposits were obtained by applying cyclic voltammetry to baths containing concentrations around 70 mM of chloroplatinic acid. A pre-activation step was necessary before the platinum-electroplating step in order to achieve good adhesive properties. The benefits of this process were ascribed to higher corrosion resistance, lower impedance and improved adhesion to the sputtered platinum. These improvements can make the application of this electrochemical technique highly useful for increasing the lifetime of implantable microelectrode arrays, such as cuff structures (IEEE Trans. Biomed. Eng. 40 (1993) 640). These medical devices, obtained by semiconductor technology could be used for selective stimulation of nerve fascicles, although, poor long-term performance has been achieved with them. The dissolution rate for platinum thin-film microelectrodes under fixed corrosion test conditions was 38.8 ng/C. Lower rates were observed for electroplated microelectrodes, obtaining a dissolution rate of 7.8 ng/C under analogous experimental ageing conditions. The corrosion behaviour of the electroplated platinum during stimulation experimental conditions was estimated by electrochemical impedance spectroscopy.


Assuntos
Materiais Biocompatíveis , Microeletrodos , Platina/farmacologia , Impedância Elétrica , Eletroquímica/métodos , Eletrodos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Compostos de Platina/farmacologia , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA