Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38990206

RESUMO

The complex evolutionary history of wheat has shaped its associated root microbial community. However, consideration of impacts from agricultural intensification has been limited. This study investigated how endogenous (genome polyploidization) and exogenous (introduction of chemical fertilizers) factors have shaped beneficial rhizobacterial selection. We combined culture-independent and -dependent methods to analyze rhizobacterial community composition and its associated functions at the root-soil interface from a range of ancestral and modern wheat genotypes, grown with and without the addition of chemical fertilizer. In controlled pot experiments, fertilization and soil compartment (rhizosphere, rhizoplane) were the dominant factors shaping rhizobacterial community composition, whereas the expansion of the wheat genome from diploid to allopolyploid caused the next greatest variation. Rhizoplane-derived culturable bacterial collections tested for plant growth-promoting (PGP) traits revealed that fertilization reduced the abundance of putative plant growth-promoting rhizobacteria in allopolyploid wheats but not in wild wheat progenitors. Taxonomic classification of these isolates showed that these differences were largely driven by reduced selection of beneficial root bacteria representative of the Bacteroidota phylum in allopolyploid wheats. Furthermore, the complexity of supported beneficial bacterial populations in hexaploid wheats was greatly reduced in comparison to diploid wild wheats. We therefore propose that the selection of root-associated bacterial genera with PGP functions may be impaired by crop domestication in a fertilizer-dependent manner, a potentially crucial finding to direct future plant breeding programs to improve crop production systems in a changing environment.


Assuntos
Agricultura , Bactérias , Fertilizantes , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Triticum , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Agricultura/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Fertilizantes/análise , Microbiota
2.
Front Microbiol ; 12: 688929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721313

RESUMO

Deep aquifers (up to 2km deep) contain massive volumes of water harboring large and diverse microbial communities at high pressure. Aquifers are home to microbial ecosystems that participate in physicochemical balances. These microorganisms can positively or negatively interfere with subsurface (i) energy storage (CH4 and H2), (ii) CO2 sequestration; and (iii) resource (water, rare metals) exploitation. The aquifer studied here (720m deep, 37°C, 88bar) is naturally oligotrophic, with a total organic carbon content of <1mg.L-1 and a phosphate content of 0.02mg.L-1. The influence of natural gas storage locally generates different pressures and formation water displacements, but it also releases organic molecules such as monoaromatic hydrocarbons at the gas/water interface. The hydrocarbon biodegradation ability of the indigenous microbial community was evaluated in this work. The in situ microbial community was dominated by sulfate-reducing (e.g., Sva0485 lineage, Thermodesulfovibriona, Desulfotomaculum, Desulfomonile, and Desulfovibrio), fermentative (e.g., Peptococcaceae SCADC1_2_3, Anaerolineae lineage and Pelotomaculum), and homoacetogenic bacteria ("Candidatus Acetothermia") with a few archaeal representatives (e.g., Methanomassiliicoccaceae, Methanobacteriaceae, and members of the Bathyarcheia class), suggesting a role of H2 in microenvironment functioning. Monoaromatic hydrocarbon biodegradation is carried out by sulfate reducers and favored by concentrated biomass and slightly acidic conditions, which suggests that biodegradation should preferably occur in biofilms present on the surfaces of aquifer rock, rather than by planktonic bacteria. A simplified bacterial community, which was able to degrade monoaromatic hydrocarbons at atmospheric pressure over several months, was selected for incubation experiments at in situ pressure (i.e., 90bar). These showed that the abundance of various bacterial genera was altered, while taxonomic diversity was mostly unchanged. The candidate phylum Acetothermia was characteristic of the community incubated at 90bar. This work suggests that even if pressures on the order of 90bar do not seem to select for obligate piezophilic organisms, modifications of the thermodynamic equilibria could favor different microbial assemblages from those observed at atmospheric pressure.

3.
Sci Rep ; 11(1): 15905, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354121

RESUMO

The abundance and phylogenetic diversity of functional genes involved in nitrification were assessed in Rothamsted field plots under contrasting management regimes-permanent bare fallow, grassland, and arable (wheat) cultivation maintained for more than 50 years. Metagenome and metatranscriptome analysis indicated nitrite oxidizing bacteria (NOB) were more abundant than ammonia oxidizing archaea (AOA) and bacteria (AOB) in all soils. The most abundant AOA and AOB in the metagenomes were, respectively, Nitrososphaera and Ca. Nitrososcosmicus (family Nitrososphaeraceae) and Nitrosospira and Nitrosomonas (family Nitrosomonadaceae). The most abundant NOB were Nitrospira including the comammox species Nitrospira inopinata, Ca. N. nitrificans and Ca. N. nitrosa. Anammox bacteria were also detected. Nitrospira and the AOA Nitrososphaeraceae showed most transcriptional activity in arable soil. Similar numbers of sequences were assigned to the amoA genes of AOA and AOB, highest in the arable soil metagenome and metatranscriptome; AOB amoA reads included those from comammox Nitrospira clades A and B, in addition to Nitrosomonadaceae. Nitrification potential assessed in soil from the experimental sites (microcosms amended or not with DCD at concentrations inhibitory to AOB but not AOA), was highest in arable samples and lower in all assays containing DCD, indicating AOB were responsible for oxidizing ammonium fertilizer added to these soils.


Assuntos
Archaea/genética , Bactérias/genética , Nitrificação/genética , Amônia/análise , Fertilizantes/análise , Variação Genética/genética , Metagenoma/genética , Metagenômica/métodos , Nitrificação/fisiologia , Nitritos/análise , Oxirredução , Filogenia , Solo/química , Microbiologia do Solo
4.
Front Microbiol ; 12: 642587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776974

RESUMO

The profound negative effect of inorganic chemical fertilizer application on rhizobacterial diversity has been well documented using 16S rRNA gene amplicon sequencing and predictive metagenomics. We aimed to measure the function and relative abundance of readily culturable putative plant growth-promoting rhizobacterial (PGPR) isolates from wheat root soil samples under contrasting inorganic fertilization regimes. We hypothesized that putative PGPR abundance will be reduced in fertilized relative to unfertilized samples. Triticum aestivum cv. Cadenza seeds were sown in a nutrient depleted agricultural soil in pots treated with and without Osmocote® fertilizer containing nitrogen-phosphorous-potassium (NPK). Rhizosphere and rhizoplane samples were collected at flowering stage (10 weeks) and analyzed by culture-independent (CI) amplicon sequence variant (ASV) analysis of rhizobacterial DNA as well as culture-dependent (CD) techniques. Rhizosphere and rhizoplane derived microbiota culture collections were tested for plant growth-promoting traits using functional bioassays. In general, fertilizer addition decreased the proportion of nutrient-solubilizing bacteria (nitrate, phosphate, potassium, iron, and zinc) isolated from rhizocompartments in wheat whereas salt tolerant bacteria were not affected. A "PGPR" database was created from isolate 16S rRNA gene sequences against which total amplified 16S rRNA soil DNA was searched, identifying 1.52% of total community ASVs as culturable PGPR isolates. Bioassays identified a higher proportion of PGPR in non-fertilized samples [rhizosphere (49%) and rhizoplane (91%)] compared to fertilized samples [rhizosphere (21%) and rhizoplane (19%)] which constituted approximately 1.95 and 1.25% in non-fertilized and fertilized total community DNA, respectively. The analyses of 16S rRNA genes and deduced functional profiles provide an in-depth understanding of the responses of bacterial communities to fertilizer; our study suggests that rhizobacteria that potentially benefit plants by mobilizing insoluble nutrients in soil are reduced by chemical fertilizer addition. This knowledge will benefit the development of more targeted biofertilization strategies.

5.
Sci Rep ; 10(1): 16053, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994429

RESUMO

Factors influencing production of greenhouse gases nitrous oxide (N2O) and nitrogen (N2) in arable soils include high nitrate, moisture and plants; we investigate how differences in the soil microbiome due to antecedent soil treatment additionally influence denitrification. Microbial communities, denitrification gene abundance and gas production in soils from tilled arable plots with contrasting fertilizer inputs (no N, mineral N, FYM) and regenerated woodland in the long-term Broadbalk field experiment were investigated. Soil was transferred to pots, kept bare or planted with wheat and after 6 weeks, transferred to sealed chambers with or without K15NO3 fertilizer for 4 days; N2O and N2 were measured daily. Concentrations of N2O were higher when fertilizer was added, lower in the presence of plants, whilst N2 increased over time and with plants. Prior soil treatment but not exposure to N-fertiliser or plants during the experiment influenced denitrification gene (nirK, nirS, nosZI, nosZII) relative abundance. Under our experimental conditions, denitrification generated mostly N2; N2O was around 2% of total gaseous N2 + N2O. Prior long-term soil management influenced the soil microbiome and abundance of denitrification genes. The production of N2O was driven by nitrate availability and N2 generation increased in the presence of plants.


Assuntos
Desnitrificação/fisiologia , Microbiologia do Solo , Solo/química , Fertilizantes/análise , Microbiota , Nitrogênio/análise , Óxido Nitroso/análise , Plantas
6.
Biol Fertil Soils ; 56(2): 185-194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038053

RESUMO

Inhibitors of urease and ammonia monooxygenase can limit the rate of conversion of urea to ammonia and ammonia to nitrate, respectively, potentially improving N fertilizer use efficiency and reducing gaseous losses. Winter wheat grown on a sandy soil in the UK was treated with urea fertilizer with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT), the nitrification inhibitor dicyandiamide (DCD) or a combination of both. The effects on soil microbial community diversity, the abundance of genes involved in nitrification and crop yields and net N recovery were compared. The only significant effect on N-cycle genes was a transient reduction in bacterial ammonia monooxygenase abundance following DCD application. However, overall crop yields and net N recovery were significantly lower in the urea treatments compared with an equivalent application of ammonium nitrate fertilizer, and significantly less for urea with DCD than the other urea treatments.

7.
Front Microbiol ; 9: 2222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337907

RESUMO

Microbial consortia producing specific enzymatic cocktails are present in the gut of phytophagous and xylophagous insects; they are known to be the most efficient ecosystems to degrade lignocellulose. Here, the ability of these consortia to degrade ex vivo lignocellulosic biomass in anaerobic bioreactors was characterized in term of bioprocess performances, enzymatic activities and bacterial community structure. In a preliminary screening, guts of Ergates faber (beetle), Potosia cuprea (chafer), Gromphadorrhina portentosa (cockroach), Locusta migratoria (locust), and Gryllus bimaculatus (cricket) were inoculated in anaerobic batch reactors, in presence of grounded wheat straw at neutral pH. A short duration fermentation of less than 8 days was observed and was related to a drop of pH from 7 to below 4.5, leading to an interruption of gas and metabolites production. Consistently, a maximum of 180 mgeq.COD of metabolites accumulated in the medium, which was related to a low degradation of the lignocellulosic biomass, with a maximum of 5 and 2.2% observed for chafer and locust gut consortia. The initial cell-bound and extracellular enzyme activities, i.e., xylanase and ß-endoglucanase, were similar to values observed in the literature. Wheat straw fermentation in bioreactors leads to an increase of cell-bounded enzyme activities, with an increase of 145% for cockroach xylanase activity. Bacterial community structures were insect dependent and mainly composed of Clostridia, Bacteroidia and Gammaproteobacteria. Improvement of lignocellulose biodegradation was operated in successive batch mode at pH 8 using the most interesting consortia, i.e., locust, cockroaches and chafer gut consortia. In these conditions, lignocellulose degradation increased significantly: 8.4, 10.5, and 21.0% of the initial COD were degraded for chafer, cockroaches and locusts, respectively in 15 days. Consistently, xylanase activity tripled for the three consortia, attesting the improvement of the process. Bacteroidia was the major bacterial class represented in the bacterial community for all consortia, followed by Clostridia and Gammaproteobacteria classes. This work demonstrates the possibility to maintain apart of insect gut biological activity ex vivo and shows that lignocellulose biodegradation can be improved by using a biomimetic approach. These results bring new insights for the optimization of lignocellulose degradation in bioreactors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA