Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 14(1): 3693, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355732

RESUMO

Rapid and accurate identification of the bacteria responsible for sepsis is paramount for effective patient care. Molecular diagnostic methods, such as polymerase chain reaction (PCR), encounter challenges in sepsis due to inhibitory compounds in the blood, necessitating their removal for precise analysis. In this study we present an innovative approach that utilizes vancomycin (Van) and allantoin (Al)-conjugated polydopamine (PDA)-coated magnetic nanoparticles (MNPs) for the rapid and automated enrichment of bacteria and their DNA extraction from blood without inducing clumping and aggregation of blood. Al/Van-PDA-MNPs, facilitated by IMS, eliminate the need for preliminary sample treatments, providing a swift and efficient method for bacterial concentration and DNA extraction within an hour. Employing Al/Van-PDA-MNPs within an automated framework has markedly improved our ability to pre-concentrate various Gram-negative and Gram-positive bacteria directly from blood samples. This advancement has effectively reduced the detection threshold to 102 colony-forming unit/mL by both PCR and quantitative PCR. The method's expedited processing time, combined with its precision, positions it as a feasible diagnostic tool for diverse healthcare settings, ranging from small clinics to large hospitals. Furthermore, the innovative application of nanoparticles for DNA extraction holds promising potential for advancing sepsis diagnostics, enabling earlier interventions and improving patient outcomes.


Assuntos
Indóis , Nanopartículas de Magnetita , Polímeros , Sepse , Humanos , Vancomicina , Alantoína , DNA Bacteriano/genética , Bactérias/genética
3.
Nano Converg ; 10(1): 45, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715925

RESUMO

The current standard method of diagnosing coronavirus disease 2019 (COVID-19) involves uncomfortable and invasive nasopharyngeal (NP) sampling using cotton swabs (CS), which can be unsuitable for self-testing. Although mid-turbinate sampling is an alternative, it has a lower diagnostic yield than NP sampling. Nasal wash (NW) has a similar diagnostic yield to NP sampling, but is cumbersome to perform. In this study, we introduce a 3D printed fluidic swab (3DPFS) that enables easy NW sampling for COVID-19 testing with improved diagnostic yield. The 3DPFS comprises a swab head, microchannel, and socket that can be connected to a syringe containing 250 µL of NW solution. The 3DPFS efficiently collects nasal fluid from the surface of the nasal cavity, resulting in higher sensitivity than CS for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This was confirmed by both reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and lateral flow assays (LFA) in virus-spiked nasal samples and clinical samples. Additionally, users reported greater comfort when using the 3DPFS compared to CS. These findings suggest that the 3DPFS can improve the performance of COVID-19 testing by facilitating efficient and less painful nasal sample collection.

4.
Adv Sci (Weinh) ; 10(28): e2302072, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37587764

RESUMO

The COVID-19 outbreak has caused public and global health crises. However, the lack of on-site fast, reliable, sensitive, and low-cost reverse transcription polymerase chain reaction (RT-PCR) testing limits early detection, timely isolation, and epidemic prevention and control. Here, the authors report a rapid mobile efficient diagnostics of infectious diseases via on-chip -RT-quantitative PCR (RT-qPCR): MEDIC-PCR. First, the authors use a roll-to-roll printing process to accomplish low-cost carbon-black-based disposable PCR chips that enable rapid LED-induced photothermal PCR cycles. The MEDIC-PCR can perform RT (3 min), and PCR (9 min) steps. Further, the cohort of 89 COVID-19 and 103 non-COVID-19 patients testing is completed by the MEDIC-PCR to show excellent diagnostic accuracy of 97%, sensitivity of 94%, and specificity of 98%. This MEDIC-PCR can contribute to the preventive global health in the face of a future pandemic.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , COVID-19/diagnóstico , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase , Doenças Transmissíveis/diagnóstico , Teste para COVID-19
5.
J Nanobiotechnology ; 20(1): 400, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064405

RESUMO

BACKGROUND: Sepsis is caused mainly by infection in the blood with a broad range of bacterial species. It can be diagnosed by molecular diagnostics once compounds in the blood that interfere with molecular diagnostics are removed. However, this removal relies on ultracentrifugation. Immunomagnetic separation (IMS), which typically uses antibody-conjugated silica-coated magnetic nanoparticles (Ab-SiO2-MNPs), has been widely applied to isolate specific pathogens in various types of samples, such as food and environmental samples. However, its direct use in blood samples containing bacteria is limited due to the aggregation of SiO2-MNPs in the blood and inability to isolate multiple species of bacteria causing sepsis. RESULTS: In this study, we report the synthesis of vancomycin-conjugated polydopamine-coated (van-PDA-MNPs) enabling preconcentration of multiple bacterial species from blood without aggregation. The presence of PDA and van on MNPs was verified using transmission electron microscopy, X-ray photoelectron spectroscopy, and energy disruptive spectroscopy. Unlike van-SiO2-MNPs, van-PDA-MNPs did not aggregate in the blood. Van-PDA-MNPs were able to preconcentrate several species of Gram-positive bacteria in the blood, lowering the limit of detection (LOD) to 10 colony forming units/mL by polymerase chain reaction (PCR) and quantitative PCR (qPCR). This is 10 times more sensitive than the LOD obtained by PCR and qPCR using van-SiO2-MNPs. CONCLUSION: These results suggest that PDA-MNPs can avoid aggregation in blood and be conjugated with receptors, thereby improving the sensitivity of molecular diagnostics of bacteria in blood samples.


Assuntos
Nanopartículas de Magnetita , Sepse , Bactérias , Bactérias Gram-Positivas , Humanos , Indóis , Nanopartículas de Magnetita/química , Patologia Molecular , Polímeros , Dióxido de Silício , Vancomicina/química
6.
Sci Rep ; 12(1): 9151, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650226

RESUMO

Bacterial contamination of blood products is a major problem in transfusion medicine, in terms of both morbidity and mortality. Platelets (PLTs) are stored at room temperature (under constant agitation) for more than 5 days, and bacteria can thus grow significantly from a low level to high titers. However, conventional methods like blood culture and lateral flow assay have disadvantages such as long detection time, low sensitivity, and the need for a large volume of blood components. We used real-time polymerase chain reaction (PCR) assays with antibiotic-conjugated magnetic nanobeads (MNBs) to detect enriched Gram-positive and -negative bacteria. The MNBs were coated with polyethylene glycol (PEG) to prevent aggregation by blood components. Over 80% of all bacteria were captured by the MNBs, and the levels of detection were 101 colony forming unit [CFU]/mL and 102 CFU/mL for Gram-positive and -negative bacteria, respectively. The detection time is < 3 h using only small volumes of blood components. Thus, compared to conventional methods, real-time PCR using MNBs allows for rapid detection with high sensitivity using only a small volume of blood components.


Assuntos
Bactérias , Contaminação de Medicamentos , Bactérias/genética , Plaquetas/microbiologia , Fenômenos Magnéticos , Plasma
7.
Biosensors (Basel) ; 11(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34436080

RESUMO

Circulating tumor cells (CTCs) are an indicator of metastatic progression and relapse. Since non-CTC cells such as red blood cells outnumber CTCs in the blood, the separation and enrichment of CTCs is key to improving their detection sensitivity. The ATP luminescence assay can measure intracellular ATP to detect cells quickly but has not yet been used for CTC detection in the blood because extracellular ATP in the blood, derived from non-CTCs, interferes with the measurement. Herein, we report on the improvement of the ATP luminescence assay for the detection of CTCs by separating and concentrating CTCs in the blood using a 3D printed immunomagnetic concentrator (3DPIC). Because of its high-aspect-ratio structure and resistance to high flow rates, 3DPIC allows cancer cells in 10 mL to be concentrated 100 times within minutes. This enables the ATP luminescence assay to detect as low as 10 cells in blood, thereby being about 10 times more sensitive than when commercial kits are used for CTC concentration. This is the first time that the ATP luminescence assay was used for the detection of cancer cells in blood. These results demonstrate the feasibility of 3DPIC as a concentrator to improve the detection limit of the ATP luminescence assay for the detection of CTCs.


Assuntos
Medições Luminescentes , Impressão Tridimensional , Protocolos de Quimioterapia Combinada Antineoplásica , Carboplatina , Contagem de Células , Ciclofosfamida , Humanos , Luminescência , Células Neoplásicas Circulantes , Tiotepa
8.
Environ Sci Technol Lett ; 8(4): 339-344, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37566380

RESUMO

During the COVID-19 pandemic, face masks have become limited in stock. Most of sterilization methods are not applicable for eliminating virus from face masks without compromising the filtration efficiency of the masks. In this study, using a human coronavirus (HCoV-229E) as a surrogate for SARS-CoV-2 contamination on KF94 face masks, we show that the virus loses its infectivity with a 4 log reduction when exposed for 10 s to 120 ppm ozone gas produced by a dielectric barrier discharge plasma generator. Scanning electron microscopy, particulate filtration efficiency (PFE), and inhalation resistance tests revealed that there was no detectable structural or functional deterioration observed in the electrocharged filter layer of Korea Filter (KF) 94 masks even after their excessive exposure to ozone. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showed decreases in amplification efficiency of HCoV-229E RNA recovered from masks exposed to ozone, indicating the damage to the RNA by the ozone treatment. Our results demonstrate that the plasma generator rapidly disinfects contaminated face masks at least five times without compromising filtration efficiency.

9.
Micromachines (Basel) ; 11(2)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079062

RESUMO

Influenza A viruses are often present in environmental and clinical samples at concentrations below the limit of detection (LOD) of molecular diagnostics. Here we report an integrated microfluidic preconcentration and nucleic amplification system (µFPNAS) which enables both preconcentration of influenza A virus H1N1 (H1N1) and amplification of its viral RNA, thereby lowering LOD for H1N1. H1N1 virus particles were first magnetically preconcentrated using magnetic nanoparticles conjugated with an antibody specific for the virus. Their isolated RNA was amplified to cDNA through thermocycling in a trapezoidal chamber of the µFPNAS. A detection limit as low as 100 TCID50 (50% tissue culture infective dose) in saliva can be obtained within 2 hours. These results suggest that the LOD of molecular diagnostics for virus can be lowered by systematically combining immunomagnetic separation and reverse transcriptase-polymerase chain reaction (RT-PCR) in one microfluidic device.

10.
Sensors (Basel) ; 20(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098268

RESUMO

Molecular diagnostics for sepsis is still a challenge due to the presence of compounds that interfere with gene amplification and bacteria at concentrations lower than the limit of detection (LOD). Here, we report on the development of a 3D printed modular microfluidic device (3DpmµFD) that preconcentrates bacteria of interest in whole blood and purifies their genomic DNA (gDNA). It is composed of a W-shaped microchannel and a conical microchamber. Bacteria of interest are magnetically captured from blood in the device with antibody conjugated magnetic nanoparticles (Ab-MNPs) at 5 mL/min in the W-shaped microchannel, while purified gDNA of the preconcentrated bacteria is obtained with magnetic silica beads (MSBs) at 2 mL/min in the conical microchamber. The conical microchamber was designed to be connected to the microchannel after the capturing process using a 3D-printed rotary valve to minimize the exposure of the MSBs to interfering compounds in blood. The pretreatment process of spiked blood (2.5 mL) can be effectively completed within about 50 min. With the 3DpmµFD, the LOD for the target microorganism Escherichia coli O157:H7 measured by both polymerase chain reaction (PCR) with electrophoresis and quantitative PCR was 10 colony forming unit (CFU) per mL of whole blood. The results suggest that our method lowers the LOD of molecular diagnostics for pathogens in blood by providing bacterial gDNA at high purity and concentration.


Assuntos
Bactérias/metabolismo , DNA Bacteriano/metabolismo , Dispositivos Lab-On-A-Chip , Patologia Molecular/métodos , Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...