Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(1): 127-136, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38126724

RESUMO

In vitro/in vivo detection of copper ions is a challenging task but one which is important in the development of new approaches to the diagnosis and treatment of cancer and hereditary diseases such as Alzheimer's, Wilson's, etc. In this paper, we present a nanopipette sensor capable of measuring Cu2+ ions with a linear range from 0.1 to 10 µM in vitro and in vivo. Using the gold-modified nanopipette sensor with a copper chelating ligand, we evaluated the accumulation ability of the liposomal form of an anticancer Cu-containing complex at three levels of biological organization. First, we detected Cu2+ ions in a single cell model of human breast adenocarcinoma MCF-7 and in murine melanoma B16 cells. The insertion of the nanoelectrode did not result in leakage of the cell membrane. We then evaluated the distribution of the Cu-complex in MCF-7 tumor spheroids and found that the diffusion-limited accumulation was a function of the depth, typical for 3D culture. Finally, we demonstrated the use of the sensor for Cu2+ ion detection in the brain of an APP/PS1 transgenic mouse model of Alzheimer's disease and tumor-bearing mice in response to injection (2 mg kg-1) of the liposomal form of the anticancer Cu-containing complex. Enhanced stability and selectivity, as well as distinct copper oxidation peaks, confirmed that the developed sensor is a promising tool for testing various types of biological systems. In summary, this research has demonstrated a minimally invasive electrochemical technique with high temporal resolution that can be used for the study of metabolism of copper or copper-based drugs in vitro and in vivo.


Assuntos
Doença de Alzheimer , Neoplasias , Camundongos , Humanos , Animais , Cobre , Doença de Alzheimer/diagnóstico , Íons , Técnicas Eletroquímicas
2.
Biomedicines ; 11(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509423

RESUMO

Reactive oxygen species (ROS) are highly reactive products of the cell metabolism derived from oxygen molecules, and their abundant level is observed in many diseases, particularly tumors, such as hepatocellular carcinoma (HCC). In vivo imaging of ROS is a necessary tool in preclinical research to evaluate the efficacy of drugs with antioxidant activity and for diagnosis and monitoring of diseases. However, most known sensors cannot be used for in vivo experiments due to low stability in the blood and rapid elimination from the body. In this work, we focused on the development of an effective delivery system of fluorescent probes for intravital ROS visualization using the HCC model. We have synthesized various lipid nanoparticles (LNPs) loaded with ROS-inducible hydrocyanine pro-fluorescent dye or plasmid DNA (pDNA) with genetically encoded protein sensors of hydrogen peroxide (HyPer7). LNP with an average diameter of 110 ± 12 nm, characterized by increased stability and pDNA loading efficiency (64 ± 7%), demonstrated preferable accumulation in the liver compared to 170 nm LNPs. We evaluated cytotoxicity and demonstrated the efficacy of hydrocyanine-5 and HyPer7 formulated in LNP for ROS visualization in mouse hepatocytes (AML12 cells) and in the mouse xenograft model of HCC. Our results demonstrate that obtained LNP could be a valuable tool in preclinical research for visualization ROS in liver diseases.

3.
Biomedicines ; 10(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35885002

RESUMO

Hepatotoxicity remains an as yet unsolved problem for adenovirus (Ad) cancer therapy. The toxic effects originate both from rapid Kupffer cell (KCs) death (early phase) and hepatocyte transduction (late phase). Several host factors and capsid components are known to contribute to hepatotoxicity, however, the complex interplay between Ad and liver cells is not fully understood. Here, by using intravital microscopy, we aimed to follow the infection and immune response in mouse liver from the first minutes up to 72 h post intravenous injection of three Ads carrying delta-24 modification (Ad5-RGD, Ad5/3, and Ad5/35). At 15-30 min following the infusion of Ad5-RGD and Ad5/3 (but not Ad5/35), the virus-bound macrophages demonstrated signs of zeiosis: the formation of long-extended protrusions and dynamic membrane blebbing with the virus release into the blood in the membrane-associated vesicles. Although real-time imaging revealed interactions between the neutrophils and virus-bound KCs within minutes after treatment, and long-term contacts of CD8+ T cells with transduced hepatocytes at 24-72 h, depletion of neutrophils and CD8+ T cells affected neither rate nor dynamics of liver infection. Ad5-RGD failed to complete replicative cycle in hepatocytes, and transduced cells remained impermeable for propidium iodide, with a small fraction undergoing spontaneous apoptosis. In Ad5-RGD-immune mice, the virus neither killed KCs nor transduced hepatocytes, while in the setting of hepatic regeneration, Ad5-RGD enhanced liver transduction. The clinical and biochemical signs of hepatotoxicity correlated well with KC death, but not hepatocyte transduction. Real-time in vivo tracking for dynamic interactions between virus and host cells provides a better understanding of mechanisms underlying Ad-related hepatotoxicity.

4.
ACS Appl Bio Mater ; 5(6): 2976-2989, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35616387

RESUMO

We present a targeted drug delivery system for therapy and diagnostics that is based on a combination of contrasting, cytotoxic, and cancer-cell-targeting properties of multifunctional carriers. The system uses multilayered polymer microcapsules loaded with magnetite and doxorubicin. Loading of magnetite nanoparticles into the polymer shell by freezing-induced loading (FIL) allowed the loading efficiency to be increased 5-fold, compared with the widely used layer-by-layer (LBL) assembly. FIL also improved the photoacoustic signal and particle mobility in a magnetic field gradient, a result unachievable by the LBL alone. For targeted delivery of the carriers to cancer cells, the carrier surface was modified with a designed ankyrin repeat protein (DARPin) directed toward the epithelial cell adhesion molecule (EpCAM). Flow cytometry measurements showed that the DARPin-coated capsules specifically interacted with the surface of EpCAM-overexpressing human cancer cells such as MCF7. In vivo and ex vivo biodistribution studies in FvB mice showed that the carrier surface modification with DARPin changed the biodistribution of the capsules toward epithelial cells. In particular, the capsules accumulated substantially in the lungs─a result that can be effectively used in targeted lung cancer therapy. The results of this work may aid in the further development of the "magic bullet" concept and may bring the quality of personalized medicine to another level.


Assuntos
Portadores de Fármacos , Nanocompostos , Animais , Cápsulas , Proteínas de Repetição de Anquirina Projetadas , Sistemas de Liberação de Medicamentos/métodos , Molécula de Adesão da Célula Epitelial , Camundongos , Polímeros , Distribuição Tecidual
5.
J Mater Chem B ; 9(42): 8823-8831, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34633027

RESUMO

The present study focuses on the immobilization of the bacterial ribonuclease barnase (Bn) into submicron porous calcium carbonate (CaCO3) particles. For encapsulation, we apply adsorption, freezing-induced loading and co-precipitation methods and study the effects of adsorption time, enzyme concentration and anionic polyelectrolytes on the encapsulation efficiency of Bn. We show that the use of negatively charged dextran sulfate (DS) and ribonucleic acid from yeast (RNA) increases the loading capacity (LC) of the enzyme on CaCO3 particles by about 3-fold as compared to the particles with Bn itself. The ribonuclease (RNase) activity of encapsulated enzyme depends on the LC of the particles and transformation of metastable vaterite to stable calcite, as studied by the assessment of enzyme activities in particles.


Assuntos
Proteínas de Bactérias/química , Carbonato de Cálcio/química , Polieletrólitos/química , Ribonucleases/química , Adsorção , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Carbonato de Cálcio/metabolismo , Sulfato de Dextrana/química , Sulfato de Dextrana/metabolismo , Escherichia coli/enzimologia , Tamanho da Partícula , Polieletrólitos/metabolismo , Porosidade , RNA/química , RNA/metabolismo , Ribonucleases/biossíntese , Ribonucleases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Propriedades de Superfície
6.
Colloids Surf B Biointerfaces ; 200: 111576, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33508660

RESUMO

Development of multimodal systems for therapy and diagnosis of neoplastic diseases is an unmet need in oncology. The possibility of simultaneous diagnostics, monitoring, and therapy of various diseases allows expanding the applicability of modern systems for drug delivery. We have developed hybrid particles based on biocompatible polymers containing magnetic nanoparticles (MNPs), photoacoustic (MNPs), fluorescent (Cy5 or Cy7 dyes), and therapeutic components (doxorubicin). To achieve high loading efficiency of MNP and Dox to nanostructured carriers, we utilized a novel freezing-induced loading technique. To reduce the systemic toxicity of antitumor drugs and increase their therapeutic efficacy, we can use targeted delivery followed by the remote control of drug release using high intensity-focused ultrasound (HIFU). Loading of MNPs allowed performing magnetic targeting of the carriers and enhanced optoacoustic signal after controlled destruction of the shell and release of therapeutics as well as MRI imaging. The raster scanning optoacoustic mesoscopy (PA, RSOM), MRI, and fluorescent tomography (FT) confirmed the ultrasound-induced release of doxorubicin from capsules: in vitro (in tubes and pieces of meat) and in vivo (after delivery to the liver). Disruption of capsules results in a significant increase of doxorubicin and Cy7 fluorescence initially quenched by magnetite nanoparticles that can be used for real-time monitoring of drug release in vivo. In addition, we explicitly studied cytotoxicity, intracellular localization, and biodistribution of these particles. Elaborated drug delivery carriers have a good perspective for simultaneous imaging and focal therapy of different cancer types, including liver cancer.


Assuntos
Nanopartículas , Neoplasias , Doxorrubicina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Imagem Multimodal , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Distribuição Tecidual
7.
Nanomaterials (Basel) ; 12(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009988

RESUMO

Magnetic nanoparticles (MNPs) are widely considered for cancer treatment, in particular for magnetic hyperthermia (MHT). Thereby, MNPs are still being optimized for lowest possible toxicity on organisms while the magnetic properties are matched for best heating capabilities. In this study, the biocompatibility of 12 nm cobalt ferrite MNPs, functionalized with citrate ions, in different dosages on mice and rats of both sexes was investigated for 30 days after intraperitoneal injection. The animals' weight, behavior, and blood cells changes, as well as blood biochemical parameters are correlated to histological examination of organs revealing that cobalt ferrite MNPs do not have toxic effects at concentrations close to those used previously for efficient MHT. Moreover, these MNPs demonstrated high specific loss power (SLP) of about 400 W g-1. Importantly the MNPs retained their magnetic properties inside tumor tissue after intratumoral administration for several MHT cycles within three days. Thus, cobalt ferrite MNPs represent a perspective platform for tumor therapy by MHT due to their ability to provide effective heating without exerting a toxic effect on the organism. This opens up new avenues for smaller MNPs sizes while their heating efficiency is maintained.

8.
Photoacoustics ; 20: 100186, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32637316

RESUMO

Photoacoustic (PA) imaging (PAI) is an emerging powerful tool for noninvasive real-time mapping of blood and lymphatic vessels and lymph nodes in vivo to diagnose cancer, lymphedema and other diseases. Among different PAI instruments, commercially available raster-scanning optoacoustic mesoscopy (RSOM) (iThera Medical GmbH., Germany) is useful for high-resolution imaging of different tissues with high potential of clinical translation. However, skin light scattering prevents mapping vessels and nodes deeper than 1-2 mm, that limits diagnostic values of PAI including RSOM. Here we demonstrate that glycerol-based tissue optical clearing (TOC) overcomes this challenge by reducing light scattering that improves RSOM depth penetration. In preclinical model of mouse limb in vivo, the replacement of conventional acoustic coupling agents such as water on the mixture of 70 % glycerol and 30 % ultrasound (US) gel resulted in the increase of tissue imaging depth in 1.5-2 times with 3D visualization of vessels with diameter down to 20 µm. To distinguish blood and lymphatic networks, we integrated label-free PA angiography (i.e., imaging of blood vessels), which uses hemoglobin as endogenous contrast agent, with PA lymphography based on labeling of lymphatic vessels with exogenous PA contrast agents. Similar to well-established clinical lymphography, contrast agents were injected in tissue and taken up by lymphatic vessels within a few minutes that provided quick RSOM lymphography. Furthermore, co-injection of PA contrast dye and multilayer nanocomposites as potential low-toxic drug-cargo showed selective prolonged accumulation of nanocomposites in sentinel lymph nodes. Overall, our findings open perspectives for deep and high resolution 3D PA angio- and lymphography, and for PA-guided lymphatic drug delivery using new RSOM & TOC approach.

9.
ACS Appl Mater Interfaces ; 12(5): 5610-5623, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31942802

RESUMO

Formulated forms of cancer therapeutics enhance the efficacy of treatment by more precise targeting, increased bioavailability of drugs, and an aptitude of some delivery systems to overcome multiple drug resistance of tumors. Drug carriers acquire importance for anti-cancer interventions via targeting tumor-associated macrophages with active molecules capable to either eliminate them or change their polarity. Although several packaged drug forms have reached the market, there is still a high demand for novel carrier systems to hurdle limitations of existing drugs on active molecules, toxicity, bioeffect, and stability. Here, we report a facile assembly and delivery methodology for biodegradable polymeric multilayer capsules (PMC) with the purpose of further use in injectable drug formulations for lung cancer therapy via direct erosion of tumors and suppression of the tumor-promoting function of macrophages in the tumor microenvironment. We demonstrate delivery of low-molecular-weight drug molecules to lung cancer cells and macrophages and provide details on in vivo distribution, cellular uptake, and disintegration of the developed PMC. Poly-l-arginine and dextran sulfate alternately adsorb on a ∼500 nm CaCO3 sacrificial template followed by removal of the inorganic core to obtain hollow capsules for consequent loading with drug molecules, gemcitabine or clodronate. The capsules further compacted upon loading down to ∼250 nm in diameter via heat treatment. A comparative study of the capsule internalization rate in vitro and in vivo reveals the benefits of a diminished carrier size. We show that macrophages and epithelial cells of the lungs and liver internalize capsules with efficacy higher than 75%. Using an in vivo mouse model of lung cancer, we also confirm that tumor lungs better retain smaller capsules than the healthy lung tissue. The pronounced cytotoxic effect of the encapsulated gemcitabine on lung cancer cells and the ability of the encapsulated clodronate to block the tumor-promoting function of macrophages prove the efficacy of the developed capsule loading method in vitro. Our study taken as a whole demonstrates the great potential of the developed PMC for in vivo treatment of cancer via transporting active molecules, including those that are water-soluble with low molecular weight, to both cancer cells and macrophages through the bloodstream.


Assuntos
Antineoplásicos , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Pulmonares/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Cápsulas , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polímeros/química , Polímeros/metabolismo , Distribuição Tecidual , Gencitabina
10.
Colloids Surf B Biointerfaces ; 181: 680-687, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226643

RESUMO

High intensity focused ultrasound (HIFU) is widely used in medical practice, including cancer therapy. Also this approach is promising for remote release of encapsulated drugs in various other biomedical applications where local treatment is needed. Our approach underpins the minimization of HIFU impact on possible degradation of biological tissues and expand the use of HIFU in the controlled release of encapsulated drugs. We demonstrated the efficient ultrasound-induced release of labeled protein (Cy7-BSA) from elaborated nanocomposite microcapsules in vitro an in vivo. The capsule fabrication was done using combination of recently developed freezing-induced loading (FIL) technique and Layer-by-Layer assembly (LbL) used for the preparation of complex multilayer BSA/tannic acid nanocomposite capsules sensitive to HIFU. These capsules contain NIR fluorescent Cy7-labeled BSA in the shell for tracking in vivo and the high concentration of labels inside the capsules resulted in self-quenching provides the real-time detection of the protein once it is released from the capsule. Ultrasound-induced release in vivo of Cy7-labeled BSA initially quenched by magnetite nanoparticles was confirmed by fluorescent tomography. The significant decrease of Cy7 fluorescence under HIFU treatment in vitro was found to be due to a generation of reactive oxygen species and fast dye oxidation. Our results demonstrate that adapted HIFU setup can be used for the directed release of encapsulated substances in vivo under tissue compatible NIR monitoring by fluorescent tomography.


Assuntos
Fluorescência , Ablação por Ultrassom Focalizado de Alta Intensidade , Nanopartículas de Magnetita/química , Animais , Cápsulas/química , Bovinos , Corantes Fluorescentes/química , Camundongos , Imagem Óptica , Tamanho da Partícula , Soroalbumina Bovina/química , Propriedades de Superfície
11.
Inorg Chem ; 58(1): 204-217, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30376305

RESUMO

This work describes interaction of a family of [Pt(N∧C)(PR3)Cl] complexes with imidazole (Im), possible application of this chemistry for regioselective labeling of proteins through imidazole rings of histidine residues and employment of the resulting phosphorescent products in bioimaging. It was found that the complexes containing aliphatic phosphines display reversible substitution of chloride ligand for imidazole function that required considerable excess of imidazole to obtain full conversion into the substituted [Pt(ppy)(PR3)(Im)] product, whereas the substitution in the complexes with aromatic phosphines readily proceeds in 1:1.5 mixture of reagents. Rapid, selective, and quantitative coordination of imidazole to the platinum complexes enabled regioselective labeling of ubiquitin. X-ray protein crystallography of the {[Pt(ppy)(PPh3)]/ubiquitin} conjugate revealed direct bonding of the platinum center to unique histidine-68 residue through the nitrogen atom of imidazole function, the coordination being also supported by noncovalent interaction of the ligands with the protein secondary structure. The variations of the cyclometalating N∧C ligands gave a series of [Pt(N∧C)(PPh3)Cl] complexes (N∧C = 2-phenylpyridine, 2-(benzofuran-3-yl)pyridine, 2-(benzo[b]thiophen-3-yl)pyridine, methyl-2-phenylquinoline-4-carboxylate), which were used to investigate the impact of N∧C-ligand onto photophysical properties of the imidazole complexes and conjugates with human serum albumin (HSA). The chloride ligand substitution for imidazole and formation of the conjugates results in ignition of the platinum chromophore luminescence with substantially higher quantum yield in the latter case. Variation of the metalating N∧C-ligand made possible the shift of the emission to the red region of visible spectrum for both types of the products. Cell-viability tests revealed low cytotoxicity of all {[Pt(N∧C)(PPh3)Cl]/HSA} conjugates, while PLIM experiments demonstrated their high potential for oxygen sensing.

12.
Proc Natl Acad Sci U S A ; 115(50): 12728-12732, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478037

RESUMO

Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering.


Assuntos
Fungos/genética , Proteínas Luminescentes/genética , Sequência de Aminoácidos , Animais , Vias Biossintéticas/genética , Ácidos Cafeicos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Duplicação Gênica/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Alinhamento de Sequência , Xenopus laevis
13.
Nanomedicine ; 14(5): 1733-1742, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29730399

RESUMO

In presented paper we have developed new system for cancer theranostics based on vascular endothelial growth factor (VEGF) targeted magnetic nanoparticles. Conjugation of anti-VEGF antibodies with bovine serum albumin coated PEGylated magnetic nanoparticles allows for improved binding with murine breast adenocarcinoma 4T1 cell line and facilitates doxorubicin delivery to tumor cells. It was shown that intravenous injection of doxorubicin loaded VEGF targeted nanoparticles increases median survival rate of mice bearing 4T1 tumors up to 50%. On the other hand magnetic resonance imaging (MRI) of 4T1 tumors 24 h after intravenous injection showed accumulation of nanoparticles in tumors, thus allowing simultaneous cancer therapy and diagnostics.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Nanopartículas de Magnetita/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Feminino , Nanopartículas de Magnetita/química , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Imagem Multimodal , Ratos , Ratos Wistar
14.
Mol Pharm ; 13(11): 3712-3723, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27654150

RESUMO

Targeted delivery of anticancer drugs to brain tumors, especially glioblastoma multiforme, which is the most frequent and aggressive type, is one of the important objectives in nanomedicine. Vascular endothelial growth factor (VEGF) and its receptor type II (VEGFR2) are promising targets because they are overexpressed by not only core tumor cells but also by migrated glioma cells, which are responsible for resistance and rapid progression of brain tumors. The purpose of the present study was to develop the liposomal drug delivery system combining enhanced loading capacity of cisplatin and high binding affinity to glioma cells. This was achieved by using of highly soluble cisplatin analogue, cis-diamminedinitratoplatinum(II), and antibodies against the native form of VEGF or VEGFR2 conjugated to liposome surface. The developed drug delivery system revealed sustained drug release profile, high affinity to antigens, and increased uptake by glioma C6 and U-87 MG cells. Pharmacokinetic study on glioma C6-bearing rats revealed prolonged blood circulation time of the liposomal formulation. The above features enabled the present drug delivery system to overcome both poor pharmacokinetics typical for platinum formulations and low loading capacity typical for conventional liposomal cisplatin formulations.


Assuntos
Cisplatino/metabolismo , Glioma/metabolismo , Lipossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Cisplatino/química , Citometria de Fluxo , Células HEK293 , Humanos , Lipossomos/química , Microscopia Confocal , Ratos , Fator A de Crescimento do Endotélio Vascular/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...