Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398045

RESUMO

The effect of an extremely low frequency alternating magnetic field (ELF AMF) at frequencies of 17, 48, and 95 Hz at 100 mT on free and internalized 4T1 breast cancer cell submicron magnetic mineral carriers with an anticancer drug, mitoxantrone, was shown. The alternating magnetic field (100 mT; 17, 48, 95 Hz; time of treatment-10.5 min with a 30 s delay) does not lead to the significant destruction of carrier shells and release of mitoxantrone or bovine serum albumin from them according to the data of spectrophotometry, or the heating of carriers in the process of exposure to magnetic fields. The most optimal set of factors that would lead to the suppression of proliferation and survival of cells with anticancer drug carriers on the third day (in comparison with the control and first day) is exposure to an alternating magnetic field of 100 mT in a pulsed mode with a frequency of 95 Hz. The presence of magnetic nanocarriers in cell lines was carried out by a direct label-free method, space-resolved Brillouin light scattering (BLS) spectrometry, which was realized for the first time. The analysis of the series of integrated BLS spectra showed an increase in the magnetic phase in cells with a growth in the number of particles per cell (from 10 to 100) after their internalization. The safety of magnetic carriers in the release of their constituent ions has been evaluated using atomic absorption spectrometry.

2.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834594

RESUMO

Towards the improvement of the efficient study of drugs and contrast agents, the 3D microfluidic platforms are currently being actively developed for testing these substances and particles in vitro. Here, we have elaborated a microfluidic lymph node-on-chip (LNOC) as a tissue engineered model of a secondary tumor in lymph node (LN) formed due to the metastasis process. The developed chip has a collagen sponge with a 3D spheroid of 4T1 cells located inside, simulating secondary tumor in the lymphoid tissue. This collagen sponge has a morphology and porosity comparable to that of a native human LN. To demonstrate the suitability of the obtained chip for pharmacological applications, we used it to evaluate the effect of contrast agent/drug carrier size, on the penetration and accumulation of particles in 3D spheroids modeling secondary tumor. For this, the 0.3, 0.5 and 4 µm bovine serum albumin (BSA)/tannic acid (TA) capsules were mixed with lymphocytes and pumped through the developed chip. The capsule penetration was examined by scanning with fluorescence microscopy followed by quantitative image analysis. The results show that capsules with a size of 0.3 µm passed more easily to the tumor spheroid and penetrated inside. We hope that the device will represent a reliable alternative to in vivo early secondary tumor models and decrease the amount of in vivo experiments in the frame of preclinical study.


Assuntos
Neoplasias , Linfócitos T , Humanos , Cápsulas , Esferoides Celulares , Colágeno , Linfonodos
3.
Biomimetics (Basel) ; 7(2)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35645188

RESUMO

Hybrid carriers with the mineral CaCO3/Fe3O4 core and the protein-tannin shell are attractive for drug delivery applications due to reliable coupling of anticancer drugs with protein-tannin complex and the possibility of remote control over drug localization and delivery by the external magnetic field. This study aims to elucidate the mechanisms of drug release via enzymatic degradation of a protein-tannin carrier shell triggered by proteolytic hydrolases trypsin and pepsin under physiological conditions. To do this, the carriers were incubated with the enzyme solutions in special buffers to maintain the enzyme activity. The time-lapse spectrophotometric and electron microscopy measurements were carried out to evaluate the degradation of the carriers. It was established that the protein-tannin complex demonstrates the different degradation behavior depending on the enzyme type and buffer medium. The incubation in trypsin solution mostly resulted in the protein shell degradation. The incubation in pepsin solution did not affect the protein component; however, the citric buffer stimulates the degradation of the mineral core. The presented results allow for predicting the degradation pathways of the carriers including the release profile of the loaded cargo under physiological conditions. The viability of 4T1 breast cancer cells with mineral magnetic carriers with protein-tannin shells was investigated, and their movement in the fields of action of the permanent magnet was shown.

4.
Biomater Sci ; 10(12): 3323-3345, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35587110

RESUMO

Superficial fungal infections are of serious concern worldwide due to their morbidity and increasing distribution across the globe in this era of growing antimicrobial resistance. The delivery of antifungals to the target regions of the skin and sustaining the effective drug concentration are essential for successful treatment of such mycoses. Topical formulations get extra benefits here if they penetrate into the hair follicles since fungal hyphae can proliferate and produce spores in such reservoirs. We designed a novel particulate system for the encapsulation and intrafollicular delivery of griseofulvin (Gf) antifungal drug, which is water-insoluble and currently commercially available in oral dosage forms. Micron-sized calcium carbonate (vaterite) carriers containing 25 ± 3% (w/w) of Gf were prepared via the wet chemical method. The successful in vivo transportation of the carriers into the hair follicles of rats was demonstrated using scanning electron and confocal laser scanning microscopy. In addition, we introduced an approach toward Gf release prolongation for the proposed system. The stabilizing coatings were formed on the surface of the obtained particles via the layer-by-layer technique. The formulations displayed sufficient biocompatibility and good cellular uptake in contact with fibroblast cells in vitro. Four different coatings were tested for their preserving ability in the course of continued carrier incubation in the model media. The best release prolonging formulation liberated 38% of the loaded Gf during 5 days, while the uncoated carriers demonstrated more than 50% drug release within the first 24 h in water. To assess the in vivo release properties, free Gf drug and Gf-loaded carriers (uncovered and covered with the stabilizing shell) were administered topically in rats and the drug excretion profiles were further studied. By comparing the daily Gf levels in urine, we verified the sustained effect (longer than a week) of the stabilizing shell formed on the carrier surface. Conversely, the application of the free drug did not provide reliable Gf detection for this period. These findings open new prospects for the efficiency enhancement of topical therapeutics. Importantly, the elaborated system could be adapted for the dermal delivery of various water-insoluble drugs beyond the scope of antifungal therapy.


Assuntos
Antifúngicos , Folículo Piloso , Animais , Antifúngicos/farmacologia , Carbonato de Cálcio , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Excipientes , Ratos , Absorção Cutânea , Água
5.
Macromol Biosci ; 21(12): e2100266, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608754

RESUMO

In current orthopedic practice, bone implants used to-date often exhibit poor osteointegration, impaired osteogenesis, and, eventually, implant failure. Actively pursued strategies for tissue engineering could overcome these shortcomings by developing new hybrid materials with bioinspired structure and enhanced regenerative potential. In this study, the osteogenic and therapeutic potential of bioactive vaterite is investigated as a functional component of a fibrous polymeric scaffold for bone regeneration. Hybrid two-layered polycaprolactone scaffolds coated with vaterite (PCL/CaCO3 ) are studied during their 28-days implantation period in a rat femur defect. After this period, the study of tissue formation in the defected area is performed by the histological study of femur cross-sections. Immobilization of alkaline phosphatase (ALP) into PCL/CaCO3 scaffolds accelerates new bone tissue formation and defect repair. PCL/CaCO3 and PCL/CaCO3 /ALP scaffolds reveal 37.3% and 62.9% areas, respectively, filled with newly formed bone tissue in cross-sections compared to unmineralized PCL scaffold (17.5%). Bone turnover markers are monitored on the 7th and 28th days after implantation and reveal an increase of osteocalcin level for both PCL/CaCO3 and PCL/CaCO3 /ALP compared with PCL indicating the activation of osteogenesis. These findings indicate that vaterite, as an osteoconductive component of polymeric scaffolds, promotes osteogenesis, supports angiogenesis, and facilitates bone defect repair.


Assuntos
Substitutos Ósseos/química , Materiais Revestidos Biocompatíveis/química , Fêmur , Osteogênese , Poliésteres/química , Alicerces Teciduais/química , Animais , Fêmur/lesões , Fêmur/metabolismo , Masculino , Ratos
6.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502059

RESUMO

The increased research activity aiming at improved delivery of pharmaceutical molecules indicates the expansion of the field. An efficient therapeutic delivery approach is based on the optimal choice of drug-carrying vehicle, successful targeting, and payload release enabling the site-specific accumulation of the therapeutic molecules. However, designing the formulation endowed with the targeting properties in vitro does not guarantee its selective delivery in vivo. The various biological barriers that the carrier encounters upon intravascular administration should be adequately addressed in its overall design to reduce the off-target effects and unwanted toxicity in vivo and thereby enhance the therapeutic efficacy of the payload. Here, we discuss the main parameters of remote-controlled drug delivery systems: (i) key principles of the carrier selection; (ii) the most significant physiological barriers and limitations associated with the drug delivery; (iii) major concepts for its targeting and cargo release stimulation by external stimuli in vivo. The clinical translation for drug delivery systems is also described along with the main challenges, key parameters, and examples of successfully translated drug delivery platforms. The essential steps on the way from drug delivery system design to clinical trials are summarized, arranged, and discussed.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Animais , Ensaios Clínicos como Assunto , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/toxicidade , Humanos , Materiais Inteligentes/química
7.
Mater Sci Eng C Mater Biol Appl ; 122: 111909, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641905

RESUMO

As the next generation of materials for bone reconstruction, we propose a multifunctional bioactive platform based on biodegradable piezoelectric polyhydroxybutyrate (PHB) fibrous scaffolds for tissue engineering with drug delivery capabilities. To use the entire surface area for local drug delivery, the scaffold surface was uniformly biomineralized with biocompatible calcium carbonate (CaCO3) microparticles in a vaterite-calcite polymorph mixture. CaCO3-coated PHB scaffolds demonstrated a similar elastic modulus compared to that of pristine one. However, reduced tensile strength and failure strain of 31% and 67% were observed, respectively. The biomimetic immobilization of enzyme alkaline phosphatase (ALP) and glycopeptide antibiotic vancomycin (VCM) preserved the CaCO3-mineralized PHB scaffold morphology and resulted in partial recrystallization of vaterite to calcite. In comparison to pristine scaffolds, the loading efficiency of CaCO3-mineralized PHB scaffolds was 4.6 and 3.5 times higher for VCM and ALP, respectively. Despite the increased number of cells incubated with ALP-immobilized scaffolds (up to 61% for non-mineralized and up to 36% for mineralized), the CaCO3-mineralized PHB scaffolds showed cell adhesion; those containing both VCM and ALP molecules had the highest cell density. Importantly, no toxicity for pre-osteoblastic cells was detected, even in the VCM-immobilized scaffolds. In contrast with antibiotic-free scaffolds, the VCM-immobilized ones had a pronounced antibacterial effect against gram-positive bacteria Staphylococcus aureus. Thus, piezoelectric hybrid PHB scaffolds modified with CaCO3 layers and immobilized VCM/ALP are promising materials in bone tissue engineering.


Assuntos
Preparações Farmacêuticas , Engenharia Tecidual , Antibacterianos/farmacologia , Carbonato de Cálcio , Alicerces Teciduais
8.
Biomater Sci ; 6(8): 2219-2229, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29985495

RESUMO

Targeted cell delivery via magnetically sensitive microcapsules of an applied magnetic field would advance localized cell transplantation therapy, by which healthy cells can be introduced into tissues to repair damaged or diseased organs. In the present research, we implement magnetically sensitive cells via an uptake of microcapsules containing magnetic nanoparticles in their walls. As is shown in an example of the MA-104 cell line, the magnetic polyelectrolyte multilayer capsules have no toxicity effect on the cells after internalization. Microscopy methods have been used to evaluate the uptake of capsules by the cells. Magnetically sensitive cells are retained in the capillary flow when the magnetic gradient field is applied (<200 T m-1), but they proliferate at the site of retention for several days after the magnet is removed. As an example of cell manipulation, we have demonstrated a novel methodology for cell sheet isolation and transfer using cells impregnated with magnetic microcapsules. A weak enzyme treatment is used to facilitate tissue engineering assemblies by cell monolayer deposition. This type of cell monolayer assembly has provided a 3D tissue engineering construction using an externally applied magnetic field, which is modelled in this study. The approach presented in this work opens perspectives for preclinical studies of tissue and organ repair.


Assuntos
Nanopartículas de Magnetita/química , Nanocompostos/química , Animais , Cápsulas/química , Adesão Celular , Linhagem Celular , Proliferação de Células , Chlorocebus aethiops , Fenômenos Eletromagnéticos
9.
Biotechnol J ; 13(11): e1800071, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29917328

RESUMO

Porous calcium carbonate (CaCO3 ) vaterite particles are very attractive templates for the encapsulation of pharmaceuticals and for the construction of hollow polyelectrolyte capsules, sensors, and enzyme-catalyzed reactors. Although CaCO3 is biocompatible and biodegradable, little is known about the intercellular behavior and properties of vaterite particles in the cytoplasm of cells. In this work, the authors combine confocal Raman and fluorescent microscopy for the imaging of porous CaCO3 vaterite particles in HeLa cells to study the uptake and status of the particles inside the cells in real time. Analysis of the fluorescence images shows that the particles penetrated the plasma membrane 3 h after being added to the cell culture and that the internalization of the particles continued up to 48 h. The crystal structure of individual vaterite particles in the cytoplasm of HeLa cells did not obviously change for 144 h. For clusters of particles, however, the authors identify Raman spectroscopic signatures of the stable calcite phase after 72 h of incubation, confirming an ion-exchange mechanism of vaterite transformation to calcite. The results indicate that these imaging approach to examining inorganic particles in living cells may have theranostic applications.


Assuntos
Carbonato de Cálcio/química , Técnicas Citológicas/métodos , Microscopia de Fluorescência/métodos , Análise Espectral Raman/métodos , Carbonato de Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...