Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(22): 220401, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35714244

RESUMO

In quantum many-body dynamics admitting a description in terms of noninteracting quasiparticles, the Feynman-Vernon influence matrix (IM), encoding the effect of the system on the evolution of its local subsystems, can be analyzed exactly. For discrete dynamics, the temporal entanglement (TE) of the corresponding IM satisfies an area law, suggesting the possibility of an efficient representation of the IM in terms of matrix-product states. A natural question is whether integrable interactions, preserving stable quasiparticles, affect the behavior of the TE. While a simple semiclassical picture suggests a sublinear growth in time, one can wonder whether interactions may lead to violations of the area law. We address this problem by analyzing quantum quenches in a family of discrete integrable dynamics corresponding to the real-time Trotterization of the interacting XXZ Heisenberg model. By means of an analytical solution at the dual-unitary point and numerical calculations for generic values of the system parameters, we provide evidence that, away from the noninteracting limit, the TE displays a logarithmic growth in time, thus violating the area law. Our findings highlight the nontrivial role of interactions, and raise interesting questions on the possibility to efficiently simulate the local dynamics of interacting integrable systems.

2.
Nat Nanotechnol ; 17(6): 577-582, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35437321

RESUMO

Exciton condensates (ECs) are macroscopic coherent states arising from condensation of electron-hole pairs1. Bilayer heterostructures, consisting of two-dimensional electron and hole layers separated by a tunnel barrier, provide a versatile platform to realize and study ECs2-4. The tunnel barrier suppresses recombination, yielding long-lived excitons5-10. However, this separation also reduces interlayer Coulomb interactions, limiting the exciton binding strength. Here, we report the observation of ECs in naturally occurring 2H-stacked bilayer WSe2. In this system, the intrinsic spin-valley structure suppresses interlayer tunnelling even when the separation is reduced to the atomic limit, providing access to a previously unattainable regime of strong interlayer coupling. Using capacitance spectroscopy, we investigate magneto-ECs, formed when partially filled Landau levels couple between the layers. We find that the strong-coupling ECs show dramatically different behaviour compared with previous reports, including an unanticipated variation of EC robustness with the orbital number, and find evidence for a transition between two types of low-energy charged excitations. Our results provide a demonstration of tuning EC properties by varying the constituent single-particle wavefunctions.

3.
Phys Rev Lett ; 126(3): 030603, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543943

RESUMO

We consider a disordered Hubbard model and show that, at sufficiently weak disorder, a single spin-down mobile impurity can thermalize an extensive initially localized system of spin-up particles. Thermalization is enabled by resonant processes that involve correlated hops of the impurity and localized particles. This effect indicates that Anderson localized insulators behave as "supercooled" systems, with mobile impurities acting as ergodic seeds. We provide analytical estimates, supported by numerical exact diagonalization, showing how the critical disorder strength for such mechanism depends on the particle density of the localized system. In the U→∞ limit, doublons are stable excitations, and they can thermalize mesoscopic systems by a similar mechanism. The emergence of an additional conservation law leads to an eventual localization of doublons. Our predictions apply to fermionic and bosonic systems and are readily accessible in ongoing experiments simulating synthetic quantum lattices with tunable disorder.

4.
Phys Rev Lett ; 125(26): 260405, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449733

RESUMO

Spin glasses and many-body localization (MBL) are prime examples of ergodicity breaking, yet their physical origin is quite different: the former phase arises due to rugged classical energy landscape, while the latter is a quantum-interference effect. Here, we study quantum dynamics of an isolated 1D spin glass under application of a transverse field. At high energy densities, the system is ergodic, relaxing via a resonance avalanche mechanism, that is also responsible for the destruction of MBL in nonglassy systems with power-law interactions. At low energy densities, the interaction-induced fields obtain a power-law soft gap, making the resonance avalanche mechanism inefficient. This leads to the persistence of the spin-glass order, as demonstrated by resonance analysis and by numerical studies. A small fraction of resonant spins forms a thermalizing system with long-range entanglement, making this regime distinct from the conventional MBL. The model considered can be realized in systems of trapped ions, opening the door to investigating slow quantum dynamics induced by glassiness.

5.
Phys Rev Lett ; 122(22): 220603, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283292

RESUMO

Motivated by recent experimental observations of coherent many-body revivals in a constrained Rydberg atom chain, we construct a weak quasilocal deformation of the Rydberg-blockaded Hamiltonian, which makes the revivals virtually perfect. Our analysis suggests the existence of an underlying nonintegrable Hamiltonian which supports an emergent SU(2)-spin dynamics within a small subspace of the many-body Hilbert space. We show that such perfect dynamics necessitates the existence of atypical, nonergodic energy eigenstates-quantum many-body scars. Furthermore, using these insights, we construct a toy model that hosts exact quantum many-body scars, providing an intuitive explanation of their origin. Our results offer specific routes to enhancing coherent many-body revivals and provide a step toward establishing the stability of quantum many-body scars in the thermodynamic limit.

6.
Phys Rev Lett ; 122(4): 043603, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768351

RESUMO

We investigate thermalization dynamics of a driven dipolar many-body quantum system through the stability of discrete time crystalline order. Using periodic driving of electronic spin impurities in diamond, we realize different types of interactions between spins and demonstrate experimentally that the interplay of disorder, driving, and interactions leads to several qualitatively distinct regimes of thermalization. For short driving periods, the observed dynamics are well described by an effective Hamiltonian which sensitively depends on interaction details. For long driving periods, the system becomes susceptible to energy exchange with the driving field and eventually enters a universal thermalizing regime, where the dynamics can be described by interaction-induced dephasing of individual spins. Our analysis reveals important differences between thermalization of long-range Ising and other dipolar spin models.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35005328

RESUMO

We study the heating time in periodically driven D-dimensional systems with interactions that decay with the distance r as a power law 1 / r α . Using linear-response theory, we show that the heating time is exponentially long as a function of the drive frequency for α > D . For systems that may not obey linear-response theory, we use a more general Magnus-like expansion to show the existence of quasiconserved observables, which imply exponentially long heating time, for α > 2 D . We also generalize a number of recent state-of-the-art Lieb-Robinson bounds for power-law systems from two-body interactions to k-body interactions and thereby obtain a longer heating time than previously established in the literature. Additionally, we conjecture that the gap between the results from the linear-response theory and the Magnus-like expansion does not have physical implications, but is, rather, due to the lack of tight Lieb-Robinson bounds for power-law interactions. We show that the gap vanishes in the presence of a hypothetical, tight bound.

8.
Phys Rev Lett ; 120(20): 200601, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864311

RESUMO

Long-range interacting systems such as nitrogen vacancy centers in diamond and trapped ions serve as experimental setups to probe a range of nonequilibrium many-body phenomena. In particular, via driving, various effective Hamiltonians with physics potentially quite distinct from short-range systems can be realized. In this Letter, we derive general rigorous bounds on the linear response energy absorption rates of periodically driven systems of spins or fermions with long-range interactions that are sign changing and fall off as 1/r^{α} with α>d/2. We show that the disorder averaged energy absorption rate at high temperatures decays exponentially with the driving frequency. This strongly suggests the presence of a prethermal plateau in which dynamics is governed by an effective, static Hamiltonian for long times, and we provide numerical evidence to support such a statement. Our results are relevant for understanding timescales of heating and new dynamical regimes described by effective Hamiltonians in such long-range systems.

9.
Phys Rev Lett ; 119(1): 010602, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28731735

RESUMO

We analyze the quantum dynamics of periodically driven, disordered systems in the presence of long-range interactions. Focusing on the stability of discrete time crystalline (DTC) order in such systems, we use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions, we show that the corresponding decay is parametrically slow, implying that robust, long-lived DTC order can be obtained. We further predict a sharp crossover from the stable DTC regime into a regime where DTC order is lost, reminiscent of a phase transition. These results are in good agreement with the recent experiments utilizing a dense, dipolar spin ensemble in diamond [Nature (London) 543, 221 (2017)NATUAS0028-083610.1038/nature21426]. They demonstrate the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by slow, critical dynamics. Our analysis shows that the DTC response can be used as a sensitive probe of nonequilibrium quantum matter.

10.
Phys Rev Lett ; 117(16): 160601, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792374

RESUMO

The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the many-body localized phase have power-law entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical points. We confirm our results using large-scale exact diagonalization. In addition, we develop a matrix-product state algorithm which allows us to access the eigenstates of large systems close to the localization transition, and discuss general implications of our results for variational studies of highly excited eigenstates in many-body localized systems.

11.
Phys Rev Lett ; 117(6): 066601, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27541472

RESUMO

We report on magnetotransport studies of dual-gated, Bernal-stacked trilayer graphene (TLG) encapsulated in boron nitride crystals. We observe a quantum Hall effect staircase which indicates a complete lifting of the 12-fold degeneracy of the zeroth Landau level. As a function of perpendicular electric field, our data exhibit a sequence of phase transitions between all integer quantum Hall states in the filling factor interval -8<ν<0. We develop a theoretical model and argue that, in contrast to monolayer and bilayer graphene, the observed Landau level splittings and quantum Hall phase transitions can be understood within a single-particle picture, but imply the presence of a charge density imbalance between the inner and outer layers of TLG, even at charge neutrality and zero transverse electric field. Our results indicate the importance of a previously unaccounted band structure parameter which, together with a more accurate estimate of the other tight-binding parameters, results in a significantly improved determination of the electronic and Landau level structure of TLG.

12.
Phys Rev Lett ; 114(14): 140401, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910094

RESUMO

We consider disordered many-body systems with periodic time-dependent Hamiltonians in one spatial dimension. By studying the properties of the Floquet eigenstates, we identify two distinct phases: (i) a many-body localized (MBL) phase, in which almost all eigenstates have area-law entanglement entropy, and the eigenstate thermalization hypothesis (ETH) is violated, and (ii) a delocalized phase, in which eigenstates have volume-law entanglement and obey the ETH. The MBL phase exhibits logarithmic in time growth of entanglement entropy when the system is initially prepared in a product state, which distinguishes it from the delocalized phase. We propose an effective model of the MBL phase in terms of an extensive number of emergent local integrals of motion, which naturally explains the spectral and dynamical properties of this phase. Numerical data, obtained by exact diagonalization and time-evolving block decimation methods, suggest a direct transition between the two phases.

13.
Phys Rev Lett ; 115(25): 256803, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722939

RESUMO

We derive general bounds on the linear response energy absorption rates of periodically driven many-body systems of spins or fermions on a lattice. We show that, for systems with local interactions, the energy absorption rate decays exponentially as a function of driving frequency in any number of spatial dimensions. These results imply that topological many-body states in periodically driven systems, although generally metastable, can have very long lifetimes. We discuss applications to other problems, including the decay of highly energetic excitations in cold atomic and solid-state systems.

14.
Nano Lett ; 14(4): 2135-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24611523

RESUMO

We investigate low-temperature magneto-transport in recently developed, high-quality multiterminal suspended bilayer graphene devices, enabling the independent measurement of the longitudinal and transverse resistance. We observe clear signatures of the fractional quantum Hall effect with different states that are either fully developed, and exhibit a clear plateau in the transverse resistance with a concomitant dip in longitudinal resistance or incipient, and exhibit only a longitudinal resistance minimum. All observed states scale as a function of filling factor ν, as expected. An unprecedented even-denominator fractional state is observed at ν = -1/2 on the hole side, exhibiting a clear plateau in Rxy quantized at the expected value of 2h/e(2) with a precision of ∼0.5%. Many of our observations, together with a recent electronic compressibility measurement performed in graphene bilayers on hexagonal boron-nitride (hBN) substrates, are consistent with a recent theory that accounts for the effect of the degeneracy between the N = 0 and N = 1 Landau levels in the fractional quantum Hall effect and predicts the occurrence of a Moore-Read type ν = -1/2 state. Owing to the experimental flexibility of bilayer graphene, which has a gate-dependent band structure, can be easily accessed by scanning probes, and can be contacted with materials such as superconductors, our findings offer new possibilities to explore the microscopic nature of even-denominator fractional quantum Hall effect.

15.
Phys Rev Lett ; 111(12): 127201, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24093294

RESUMO

We construct a complete set of local integrals of motion that characterize the many-body localized (MBL) phase. Our approach relies on the assumption that local perturbations act locally on the eigenstates in the MBL phase, which is supported by numerical simulations of the random-field XXZ spin chain. We describe the structure of the eigenstates in the MBL phase and discuss the implications of local conservation laws for its nonequilibrium quantum dynamics. We argue that the many-body localization can be used to protect coherence in the system by suppressing relaxation between eigenstates with different local integrals of motion.

16.
Phys Rev Lett ; 111(7): 076802, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23992076

RESUMO

Graphene and its multilayers have attracted considerable interest because their fourfold spin and valley degeneracy enables a rich variety of broken-symmetry states arising from electron-electron interactions, and raises the prospect of controlled phase transitions among them. Here we report local electronic compressibility measurements of ultraclean suspended graphene that reveal a multitude of fractional quantum Hall states surrounding filling factors ν=-1/2 and -1/4. Several of these states exhibit phase transitions that indicate abrupt changes in the underlying order, and we observe many additional oscillations in compressibility as ν approaches -1/2, suggesting further changes in spin and/or valley polarization. We use a simple model based on crossing Landau levels of composite fermions with different internal degrees of freedom to explain many qualitative features of the experimental data. Our results add to the diverse array of many-body states observed in graphene and demonstrate substantial control over their order parameters.

17.
Phys Rev Lett ; 110(26): 260601, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848859

RESUMO

Recent numerical work by Bardarson, Pollmann, and Moore revealed a slow, logarithmic in time, growth of the entanglement entropy for initial product states in a putative many-body localized phase. We show that this surprising phenomenon results from the dephasing due to exponentially small interaction-induced corrections to the eigenenergies of different states. For weak interactions, we find that the entanglement entropy grows as ξln(Vt/ℏ), where V is the interaction strength, and ξ is the single-particle localization length. The saturated value of the entanglement entropy at long times is determined by the participation ratios of the initial state over the eigenstates of the subsystem. Our work shows that the logarithmic entanglement growth is a universal phenomenon characteristic of the many-body localized phase in any number of spatial dimensions, and reveals a broad hierarchy of dephasing time scales present in such a phase.

18.
Phys Rev Lett ; 110(16): 165304, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23679614

RESUMO

Recently, optical lattices with nonzero Berry's phases of Bloch bands have been realized. New approaches for measuring Berry's phases and topological properties of bands with experimental tools appropriate for ultracold atoms need to be developed. In this Letter, we propose an interferometric method for measuring Berry's phases of two-dimensional Bloch bands. The key idea is to use a combination of Ramsey interference and Bloch oscillations to measure Zak phases, i.e., Berry's phases for closed trajectories corresponding to reciprocal lattice vectors. We demonstrate that this technique can be used to measure the Berry curvature of Bloch bands, the π Berry's phase of Dirac points, and the first Chern number of topological bands. We discuss several experimentally feasible realizations of this technique, which make it robust against low-frequency magnetic noise.

19.
Phys Rev Lett ; 111(26): 265302, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24483802

RESUMO

We explore the dynamics and the steady state of a driven quantum spin coupled to a bath of fermions, which can be realized with a strongly imbalanced mixture of ultracold atoms using currently available experimental tools. Radio-frequency driving can be used to induce tunneling between the spin states. The Rabi oscillations are modified due to the coupling of the quantum spin to the environment, which causes frequency renormalization and damping. The spin-bath coupling can be widely tuned by adjusting the scattering length through a Feshbach resonance. When the scattering potential creates a bound state, by tuning the driving frequency it is possible to populate either the ground state, in which the bound state is filled, or a metastable state in which the bound state is empty. In the latter case, we predict an emergent inversion of the steady-state magnetization. Our work shows that different regimes of dissipative dynamics can be explored with a quantum spin coupled to a bath of ultracold fermions.

20.
Phys Rev Lett ; 109(2): 020504, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23030142

RESUMO

Entanglement entropy has become an important theoretical concept in condensed matter physics because it provides a unique tool for characterizing quantum mechanical many-body phases and new kinds of quantum order. However, the experimental measurement of entanglement entropy in a many-body system is widely believed to be unfeasible, owing to the nonlocal character of this quantity. Here, we propose a general method to measure the entanglement entropy. The method is based on a quantum switch (a two-level system) coupled to a composite system consisting of several copies of the original many-body system. The state of the switch controls how different parts of the composite system connect to each other. We show that, by studying the dynamics of the quantum switch only, the Rényi entanglement entropy of the many-body system can be extracted. We propose a possible design of the quantum switch, which can be realized in cold atomic systems. Our work provides a route towards testing the scaling of entanglement in critical systems as well as a method for a direct experimental detection of topological order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...