Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Biotechnol ; 356: 19-29, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914617

RESUMO

Halomonas smyrnensis AAD6T is a moderately halophilic bacterium proven to be a powerful biotechnological tool with its ability to accumulate valuable biopolymers such as levan and poly(3-hydroxybutyrate) (PHB). Levan is a fructose homopolymer with ß-2,6 fructofuranosidic linkages on the polymer backbone, and its distinctive applications in various industries such as food, pharmaceutical, medical, and chemical have been well-defined. On the other hand, PHB is a promising raw material to produce biodegradable plastics. Although it was shown in our previous studies that H. smyrnensis AAD6T exhibits one of the highest conversion yields of sucrose to levan reported to date, novel strategies are required to overcome high costs of levan production. In this study, we aimed at increasing levan productivity of H. smyrnensis AAD6T cultures using random mutagenesis techniques combined (i.e., ethyl methanesulfate treatment and/or ultraviolet irradiation). After several consecutive treatments, mutant strains BAE2, BAE5 and BAE6 were selected as efficient levan producers, as BAE2 standing out as the most efficient one not only in sucrose utilization and levan production rates, but also in final PHB concentrations. The mutants' whole genome sequences were analysed to determine the mutations occurred. Several mutations in genes related to central carbon metabolism and osmoregulation were found. Our results suggest that random mutagenesis can be a facile and efficient strategy to enhance the performance of extremophiles in adverse conditions.


Assuntos
Halomonas , Carbono/metabolismo , Frutanos/metabolismo , Halomonas/genética , Halomonas/metabolismo , Sacarose/metabolismo
2.
Microorganisms ; 9(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918392

RESUMO

Fructans are fructose-based (poly)saccharides with inulin and levan being the best-known ones. Thanks to their health-related benefits, inulin-type fructans have been under the focus of scientific and industrial communities, though mostly represented by plant-based inulins, and rarely by microbial ones. Recently, it was discovered that some extremely halophilic Archaea are also able to synthesize fructans. Here, we describe the first in-depth functional and molecular characterization of an Archaeal inulosucrase from Halomicrobium sp. IBSBa (HmcIsc). The HmcIsc enzyme was recombinantly expressed and purified in Escherichia coli and shown to synthesize inulin as proven by nuclear magnetic resonance (NMR) analysis. In accordance with the halophilic lifestyle of its native host, the enzyme showed maximum activity at very high NaCl concentrations (3.5 M), with specific adaptations for that purpose. Phylogenetic analyses suggested that Archaeal inulosucrases have been acquired from halophilic bacilli through horizontal gene transfer, with a HX(H/F)T motif evolving further into a HXHT motif, together with a unique D residue creating the onset of a specific alternative acceptor binding groove. This work uncovers a novel area in fructan research, highlighting unexplored aspects of life in hypersaline habitats, and raising questions about the general physiological relevance of inulosucrases and their products in nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA