Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7702, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057330

RESUMO

Loss-of-function of DDX3X is a leading cause of neurodevelopmental disorders (NDD) in females. DDX3X is also a somatically mutated cancer driver gene proposed to have tumour promoting and suppressing effects. We perform saturation genome editing of DDX3X, testing in vitro the functional impact of 12,776 nucleotide variants. We identify 3432 functionally abnormal variants, in three distinct classes. We train a machine learning classifier to identify functionally abnormal variants of NDD-relevance. This classifier has at least 97% sensitivity and 99% specificity to detect variants pathogenic for NDD, substantially out-performing in silico predictors, and resolving up to 93% of variants of uncertain significance. Moreover, functionally-abnormal variants can account for almost all of the excess nonsynonymous DDX3X somatic mutations seen in DDX3X-driven cancers. Systematic maps of variant effects generated in experimentally tractable cell types have the potential to transform clinical interpretation of both germline and somatic disease-associated variation.


Assuntos
Neoplasias , Transtornos do Neurodesenvolvimento , Feminino , Humanos , Edição de Genes , Virulência , Transtornos do Neurodesenvolvimento/genética , Neoplasias/genética , Células Germinativas , Mutação em Linhagem Germinativa , RNA Helicases DEAD-box/genética
2.
Nat Genet ; 55(11): 1892-1900, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884686

RESUMO

Somatic mutations are hypothesized to play a role in many non-neoplastic diseases. We performed whole-exome sequencing of 1,182 microbiopsies dissected from lesional and nonlesional epidermis from 111 patients with psoriasis to search for evidence that somatic mutations in keratinocytes may influence the disease process. Lesional skin remained highly polyclonal, showing no evidence of large-scale spread of clones carrying potentially pathogenic mutations. The mutation rate of keratinocytes was similarly only modestly affected by the disease. We found evidence of positive selection in previously reported driver genes NOTCH1, NOTCH2, TP53, FAT1 and PPM1D and also identified mutations in four genes (GXYLT1, CHEK2, ZFP36L2 and EEF1A1) that we hypothesize are selected for in squamous epithelium irrespective of disease status. Finally, we describe a mutational signature of psoralens-a class of chemicals previously found in some sunscreens and which are used as part of PUVA (psoralens and ultraviolet-A) photochemotherapy treatment for psoriasis.


Assuntos
Furocumarinas , Psoríase , Humanos , Ficusina/uso terapêutico , Terapia PUVA , Psoríase/tratamento farmacológico , Psoríase/genética , Psoríase/patologia , Furocumarinas/uso terapêutico , Mutação
3.
Genome Biol ; 24(1): 191, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635261

RESUMO

BACKGROUND: In humans, muscle-invasive bladder cancer (MIBC) is highly aggressive and associated with a poor prognosis. With a high mutation load and large number of altered genes, strategies to delineate key driver events are necessary. Dogs and cats develop urothelial carcinoma (UC) with histological and clinical similarities to human MIBC. Cattle that graze on bracken fern also develop UC, associated with exposure to the carcinogen ptaquiloside. These species may represent relevant animal models of spontaneous and carcinogen-induced UC that can provide insight into human MIBC. RESULTS: Whole-exome sequencing of domestic canine (n = 87) and feline (n = 23) UC, and comparative analysis with human MIBC reveals a lower mutation rate in animal cases and the absence of APOBEC mutational signatures. A convergence of driver genes (ARID1A, KDM6A, TP53, FAT1, and NRAS) is discovered, along with common focally amplified and deleted genes involved in regulation of the cell cycle and chromatin remodelling. We identify mismatch repair deficiency in a subset of canine and feline UCs with biallelic inactivation of MSH2. Bovine UC (n = 8) is distinctly different; we identify novel mutational signatures which are recapitulated in vitro in human urinary bladder UC cells treated with bracken fern extracts or purified ptaquiloside. CONCLUSION: Canine and feline urinary bladder UC represent relevant models of MIBC in humans, and cross-species analysis can identify evolutionarily conserved driver genes. We characterize mutational signatures in bovine UC associated with bracken fern and ptaquiloside exposure, a human-linked cancer exposure. Our work demonstrates the relevance of cross-species comparative analysis in understanding both human and animal UC.


Assuntos
Carcinoma de Células de Transição , Doenças do Gato , Doenças do Cão , Neoplasias da Bexiga Urinária , Humanos , Animais , Gatos , Bovinos , Cães , Neoplasias da Bexiga Urinária/genética , Carcinógenos , Músculos
4.
Sci Adv ; 9(22): eadf4409, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256941

RESUMO

DNA interstrand crosslinks (ICLs) pose a major obstacle for DNA replication and transcription if left unrepaired. The cellular response to ICLs requires the coordination of various DNA repair mechanisms. Homologous recombination (HR) intermediates generated in response to ICLs, require efficient and timely conversion by structure-selective endonucleases. Our knowledge on the precise coordination of this process remains incomplete. Here, we designed complementary genetic screens to map the machinery involved in the response to ICLs and identified FIRRM/C1orf112 as an indispensable factor in maintaining genome stability. FIRRM deficiency leads to hypersensitivity to ICL-inducing compounds, accumulation of DNA damage during S-G2 phase of the cell cycle, and chromosomal aberrations, and elicits a unique mutational signature previously observed in HR-deficient tumors. In addition, FIRRM is recruited to ICLs, controls MUS81 chromatin loading, and thereby affects resolution of HR intermediates. FIRRM deficiency in mice causes early embryonic lethality and accelerates tumor formation. Thus, FIRRM plays a critical role in the response to ICLs encountered during DNA replication.


Assuntos
Dano ao DNA , Reparo do DNA , Animais , Camundongos , Replicação do DNA , Recombinação Homóloga , DNA
5.
Blood Cancer Discov ; 4(3): 208-227, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723991

RESUMO

The rarity of malignant Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) limits the ability to study the genomics of cHL. To circumvent this, our group has previously optimized fluorescence-activated cell sorting to purify HRS cells. Using this approach, we now report the whole-genome sequencing landscape of HRS cells and reconstruct the chronology and likely etiology of pathogenic events leading to cHL. We identified alterations in driver genes not previously described in cHL, APOBEC mutational activity, and the presence of complex structural variants including chromothripsis. We found that high ploidy in cHL is often acquired through multiple, independent chromosomal gains events including whole-genome duplication. Evolutionary timing analyses revealed that structural variants enriched for RAG motifs, driver mutations in B2M, BCL7A, GNA13, and PTPN1, and the onset of AID-driven mutagenesis usually preceded large chromosomal gains. This study provides a temporal reconstruction of cHL pathogenesis. SIGNIFICANCE: Previous studies in cHL were limited to coding sequences and therefore not able to comprehensively decipher the tumor complexity. Here, leveraging cHL whole-genome characterization, we identify driver events and reconstruct the tumor evolution, finding that structural variants, driver mutations, and AID mutagenesis precede chromosomal gains. This article is highlighted in the In This Issue feature, p. 171.


Assuntos
Doença de Hodgkin , Células de Reed-Sternberg , Humanos , Células de Reed-Sternberg/patologia , Doença de Hodgkin/genética , Doença de Hodgkin/patologia , Citometria de Fluxo , Evolução Molecular
7.
Genome Biol Evol ; 14(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36346145

RESUMO

The mutually exclusive splicing of tandem duplicated exons produces protein isoforms that are identical save for a homologous region that allows for the fine tuning of protein function. Tandem duplicated exon substitution events are rare, yet highly important alternative splicing events. Most events are ancient, their isoforms are highly expressed, and they have significantly more pathogenic mutations than other splice events. Here, we analyzed the physicochemical properties and functional roles of the homologous polypeptide regions produced by the 236 tandem duplicated exon substitutions annotated in the human gene set. We find that the most important structural and functional residues in these homologous regions are maintained, and that most changes are conservative rather than drastic. Three quarters of the isoforms produced from tandem duplicated exon substitution events are tissue-specific, particularly in nervous and cardiac tissues, and tandem duplicated exon substitution events are enriched in functional terms related to structures in the brain and skeletal muscle. We find considerable evidence for the convergent evolution of tandem duplicated exon substitution events in vertebrates, arthropods, and nematodes. Twelve human gene families have orthologues with tandem duplicated exon substitution events in both Drosophila melanogaster and Caenorhabditis elegans. Six of these gene families are ion transporters, suggesting that tandem exon duplication in genes that control the flow of ions into the cell has an adaptive benefit. The ancient origins, the strong indications of tissue-specific functions, and the evidence of convergent evolution suggest that these events may have played important roles in the evolution of animal tissues and organs.


Assuntos
Processamento Alternativo , Drosophila melanogaster , Animais , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Éxons , Splicing de RNA , Isoformas de Proteínas/genética , Evolução Molecular
8.
Mol Cancer ; 21(1): 183, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36131292

RESUMO

BACKGROUND: Up to 80% of cases of prostate cancer present with multifocal independent tumour lesions leading to the concept of a field effect present in the normal prostate predisposing to cancer development. In the present study we applied Whole Genome DNA Sequencing (WGS) to a group of morphologically normal tissue (n = 51), including benign prostatic hyperplasia (BPH) and non-BPH samples, from men with and men without prostate cancer. We assess whether the observed genetic changes in morphologically normal tissue are linked to the development of cancer in the prostate. RESULTS: Single nucleotide variants (P = 7.0 × 10-03, Wilcoxon rank sum test) and small insertions and deletions (indels, P = 8.7 × 10-06) were significantly higher in morphologically normal samples, including BPH, from men with prostate cancer compared to those without. The presence of subclonal expansions under selective pressure, supported by a high level of mutations, were significantly associated with samples from men with prostate cancer (P = 0.035, Fisher exact test). The clonal cell fraction of normal clones was always higher than the proportion of the prostate estimated as epithelial (P = 5.94 × 10-05, paired Wilcoxon signed rank test) which, along with analysis of primary fibroblasts prepared from BPH specimens, suggests a stromal origin. Constructed phylogenies revealed lineages associated with benign tissue that were completely distinct from adjacent tumour clones, but a common lineage between BPH and non-BPH morphologically normal tissues was often observed. Compared to tumours, normal samples have significantly less single nucleotide variants (P = 3.72 × 10-09, paired Wilcoxon signed rank test), have very few rearrangements and a complete lack of copy number alterations. CONCLUSIONS: Cells within regions of morphologically normal tissue (both BPH and non-BPH) can expand under selective pressure by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to the presence of cancer. Expansions, which are probably stromal in origin, are characterised by lack of recurrent driver mutations, by almost complete absence of structural variants/copy number alterations, and mutational processes similar to malignant tissue. Our findings have implications for treatment (focal therapy) and early detection approaches.


Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Células Clonais/patologia , Humanos , Masculino , Nucleotídeos , Próstata/patologia , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
9.
Nat Commun ; 13(1): 3949, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803914

RESUMO

Cellular DNA damage caused by reactive oxygen species is repaired by the base excision repair (BER) pathway which includes the DNA glycosylase MUTYH. Inherited biallelic MUTYH mutations cause predisposition to colorectal adenomas and carcinoma. However, the mechanistic progression from germline MUTYH mutations to MUTYH-Associated Polyposis (MAP) is incompletely understood. Here, we sequence normal tissue DNAs from 10 individuals with MAP. Somatic base substitution mutation rates in intestinal epithelial cells were elevated 2 to 4-fold in all individuals, except for one showing a 31-fold increase, and were also increased in other tissues. The increased mutation burdens were of multiple mutational signatures characterised by C > A changes. Different mutation rates and signatures between individuals are likely due to different MUTYH mutations or additional inherited mutations in other BER pathway genes. The elevated base substitution rate in normal cells likely accounts for the predisposition to neoplasia in MAP. Despite ubiquitously elevated mutation rates, individuals with MAP do not display overt evidence of premature ageing. Thus, accumulation of somatic mutations may not be sufficient to cause the global organismal functional decline of ageing.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais , DNA Glicosilases/genética , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Glicosilases/metabolismo , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Mutação , Taxa de Mutação
10.
Front Aging ; 3: 851039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821807

RESUMO

The role of somatic mutations in complex diseases, including neurodevelopmental and neurodegenerative disorders, is becoming increasingly clear. However, to date, no study has shown their relation to Parkinson disease's phenotype. To explore the relevance of embryonic somatic mutations in sporadic Parkinson disease, we performed whole-exome sequencing in blood and four brain regions of ten patients. We identified 59 candidate somatic single nucleotide variants (sSNVs) through sensitive calling and a careful filtering strategy (COSMOS). We validated 27 of them with amplicon-based ultra-deep sequencing, with a 70% validation rate for the highest-confidence variants. The identified sSNVs are in genes with synaptic functions that are co-expressed with genes previously associated with Parkinson disease. Most of the sSNVs were only called in blood but were also found in the brain tissues with ultra-deep amplicon sequencing, demonstrating the strength of multi-tissue sampling designs.

11.
Nature ; 606(7913): 343-350, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650442

RESUMO

Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer4-6, but the reason for such abrupt functional decline after 70 years of age remains unclear. Here we sequenced 3,579 genomes from single cell-derived colonies of haematopoietic cells across 10 human subjects from 0 to 81 years of age. Haematopoietic stem cells or multipotent progenitors (HSC/MPPs) accumulated a mean of 17 mutations per year after birth and lost 30 base pairs per year of telomere length. Haematopoiesis in adults less than 65 years of age was massively polyclonal, with high clonal diversity and a stable population of 20,000-200,000 HSC/MPPs contributing evenly to blood production. By contrast, haematopoiesis in individuals aged over 75 showed profoundly decreased clonal diversity. In each of the older subjects, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before the subject was 40 years old, but only 22% had known driver mutations. Genome-wide selection analysis estimated that between 1 in 34 and 1 in 12 non-synonymous mutations were drivers, accruing at constant rates throughout life, affecting more genes than identified in blood cancers. Loss of the Y chromosome conferred selective benefits in males. Simulations of haematopoiesis, with constant stem cell population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.


Assuntos
Envelhecimento , Hematopoiese Clonal , Células Clonais , Longevidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Criança , Pré-Escolar , Hematopoiese Clonal/genética , Células Clonais/citologia , Feminino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas/citologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Células-Tronco Multipotentes/citologia , Adulto Jovem
12.
Nature ; 606(7913): 335-342, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650444

RESUMO

Clonal expansions driven by somatic mutations become pervasive across human tissues with age, including in the haematopoietic system, where the phenomenon is termed clonal haematopoiesis1-4. The understanding of how and when clonal haematopoiesis develops, the factors that govern its behaviour, how it interacts with ageing and how these variables relate to malignant progression remains limited5,6. Here we track 697 clonal haematopoiesis clones from 385 individuals 55 years of age or older over a median of 13 years. We find that 92.4% of clones expanded at a stable exponential rate over the study period, with different mutations driving substantially different growth rates, ranging from 5% (DNMT3A and TP53) to more than 50% per year (SRSF2P95H). Growth rates of clones with the same mutation differed by approximately ±5% per year, proportionately affecting slow drivers more substantially. By combining our time-series data with phylogenetic analysis of 1,731 whole-genome sequences of haematopoietic colonies from 7 individuals from an older age group, we reveal distinct patterns of lifelong clonal behaviour. DNMT3A-mutant clones preferentially expanded early in life and displayed slower growth in old age, in the context of an increasingly competitive oligoclonal landscape. By contrast, splicing gene mutations drove expansion only later in life, whereas TET2-mutant clones emerged across all ages. Finally, we show that mutations driving faster clonal growth carry a higher risk of malignant progression. Our findings characterize the lifelong natural history of clonal haematopoiesis and give fundamental insights into the interactions between somatic mutation, ageing and clonal selection.


Assuntos
Hematopoiese Clonal , Células Clonais , Idoso , Envelhecimento , Hematopoiese Clonal/genética , Células Clonais/citologia , Genoma Humano , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Mutação , Filogenia
13.
Protein Sci ; 31(5): e4314, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481629

RESUMO

IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate-limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine-tuned by post-translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide-controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis.


Assuntos
Nucleotídeos de Guanina , IMP Desidrogenase , Adenina , Trifosfato de Adenosina , Guanosina Pentafosfato , Guanosina Trifosfato/metabolismo , Homeostase , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Modelos Moleculares
14.
Nature ; 604(7906): 517-524, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418684

RESUMO

The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans1-7. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans8, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined-including variation of around 30-fold in lifespan and around 40,000-fold in body mass-the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.


Assuntos
Longevidade , Taxa de Mutação , Animais , Humanos , Longevidade/genética , Mamíferos/genética , Mutagênese/genética , Mutação
15.
Nat Genet ; 53(10): 1434-1442, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594041

RESUMO

Mutation accumulation in somatic cells contributes to cancer development and is proposed as a cause of aging. DNA polymerases Pol ε and Pol δ replicate DNA during cell division. However, in some cancers, defective proofreading due to acquired POLE/POLD1 exonuclease domain mutations causes markedly elevated somatic mutation burdens with distinctive mutational signatures. Germline POLE/POLD1 mutations cause familial cancer predisposition. Here, we sequenced normal tissue and tumor DNA from individuals with germline POLE/POLD1 mutations. Increased mutation burdens with characteristic mutational signatures were found in normal adult somatic cell types, during early embryogenesis and in sperm. Thus human physiology can tolerate ubiquitously elevated mutation burdens. Except for increased cancer risk, individuals with germline POLE/POLD1 mutations do not exhibit overt features of premature aging. These results do not support a model in which all features of aging are attributable to widespread cell malfunction directly resulting from somatic mutation burdens accrued during life.


Assuntos
DNA Polimerase III/genética , DNA Polimerase II/genética , Mutação em Linhagem Germinativa/genética , Adolescente , Adulto , Idoso , Desenvolvimento Embrionário/genética , Genoma Humano/genética , Humanos , Neoplasias Intestinais/patologia , Intestinos/patologia , Pessoa de Meia-Idade , Mutagênese/genética , Filogenia , Células-Tronco/patologia , Adulto Jovem
16.
Nature ; 598(7881): 473-478, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34646017

RESUMO

The progression of chronic liver disease to hepatocellular carcinoma is caused by the acquisition of somatic mutations that affect 20-30 cancer genes1-8. Burdens of somatic mutations are higher and clonal expansions larger in chronic liver disease9-13 than in normal liver13-16, which enables positive selection to shape the genomic landscape9-13. Here we analysed somatic mutations from 1,590 genomes across 34 liver samples, including healthy controls, alcohol-related liver disease and non-alcoholic fatty liver disease. Seven of the 29 patients with liver disease had mutations in FOXO1, the major transcription factor in insulin signalling. These mutations affected a single hotspot within the gene, impairing the insulin-mediated nuclear export of FOXO1. Notably, six of the seven patients with FOXO1S22W hotspot mutations showed convergent evolution, with variants acquired independently by up to nine distinct hepatocyte clones per patient. CIDEB, which regulates lipid droplet metabolism in hepatocytes17-19, and GPAM, which produces storage triacylglycerol from free fatty acids20,21, also had a significant excess of mutations. We again observed frequent convergent evolution: up to fourteen independent clones per patient with CIDEB mutations and up to seven clones per patient with GPAM mutations. Mutations in metabolism genes were distributed across multiple anatomical segments of the liver, increased clone size and were seen in both alcohol-related liver disease and non-alcoholic fatty liver disease, but rarely in hepatocellular carcinoma. Master regulators of metabolic pathways are a frequent target of convergent somatic mutation in alcohol-related and non-alcoholic fatty liver disease.


Assuntos
Hepatopatias/genética , Hepatopatias/metabolismo , Fígado/metabolismo , Mutação/genética , Transporte Ativo do Núcleo Celular/genética , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Doença Crônica , Estudos de Coortes , Ácidos Graxos não Esterificados/metabolismo , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Resistência à Insulina , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo
17.
Nucleic Acids Res ; 49(14): 8232-8246, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34302486

RESUMO

Most coding genes in the human genome are annotated with multiple alternative transcripts. However, clear evidence for the functional relevance of the protein isoforms produced by these alternative transcripts is often hard to find. Alternative isoforms generated from tandem exon duplication-derived substitutions are an exception. These splice events are rare, but have important functional consequences. Here, we have catalogued the 236 tandem exon duplication-derived substitutions annotated in the GENCODE human reference set. We find that more than 90% of the events have a last common ancestor in teleost fish, so are at least 425 million years old, and twenty-one can be traced back to the Bilateria clade. Alternative isoforms generated from tandem exon duplication-derived substitutions also have significantly more clinical impact than other alternative isoforms. Tandem exon duplication-derived substitutions have >25 times as many pathogenic and likely pathogenic mutations as other alternative events. Tandem exon duplication-derived substitutions appear to have vital functional roles in the cell and may have played a prominent part in metazoan evolution.


Assuntos
Evolução Molecular , Peixes/genética , Genoma Humano/genética , Isoformas de Proteínas/genética , Processamento Alternativo/genética , Animais , Éxons/genética , Duplicação Gênica/genética , Humanos , Anotação de Sequência Molecular , Alinhamento de Sequência
18.
NAR Genom Bioinform ; 3(2): lqab044, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34046593

RESUMO

Alternative splicing of messenger RNA can generate an array of mature transcripts, but it is not clear how many go on to produce functionally relevant protein isoforms. There is only limited evidence for alternative proteins in proteomics analyses and data from population genetic variation studies indicate that most alternative exons are evolving neutrally. Determining which transcripts produce biologically important isoforms is key to understanding isoform function and to interpreting the real impact of somatic mutations and germline variations. Here we have developed a method, TRIFID, to classify the functional importance of splice isoforms. TRIFID was trained on isoforms detected in large-scale proteomics analyses and distinguishes these biologically important splice isoforms with high confidence. Isoforms predicted as functionally important by the algorithm had measurable cross species conservation and significantly fewer broken functional domains. Additionally, exons that code for these functionally important protein isoforms are under purifying selection, while exons from low scoring transcripts largely appear to be evolving neutrally. TRIFID has been developed for the human genome, but it could in principle be applied to other well-annotated species. We believe that this method will generate valuable insights into the cellular importance of alternative splicing.

19.
Nature ; 593(7859): 405-410, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33911282

RESUMO

Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.


Assuntos
Células Sanguíneas/metabolismo , Diferenciação Celular/genética , Análise Mutacional de DNA/métodos , Músculo Liso/metabolismo , Mutação , Neurônios/metabolismo , Imagem Individual de Molécula/métodos , Células-Tronco/metabolismo , Doença de Alzheimer/genética , Células Sanguíneas/citologia , Divisão Celular , Estudos de Coortes , Colo/citologia , Epitélio/metabolismo , Granulócitos/citologia , Granulócitos/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Liso/citologia , Mutagênese , Taxa de Mutação , Neurônios/citologia , Células-Tronco/citologia
20.
Nat Commun ; 12(1): 1861, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767199

RESUMO

Multiple myeloma (MM) is consistently preceded by precursor conditions recognized clinically as monoclonal gammopathy of undetermined significance (MGUS) or smoldering myeloma (SMM). We interrogate the whole genome sequence (WGS) profile of 18 MGUS and compare them with those from 14 SMMs and 80 MMs. We show that cases with a non-progressing, clinically stable myeloma precursor condition (n = 15) are characterized by later initiation in the patient's life and by the absence of myeloma defining genomic events including: chromothripsis, templated insertions, mutations in driver genes, aneuploidy, and canonical APOBEC mutational activity. This data provides evidence that WGS can be used to recognize two biologically and clinically distinct myeloma precursor entities that are either progressive or stable.


Assuntos
Genoma Humano/genética , Gamopatia Monoclonal de Significância Indeterminada/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo Latente/genética , Variações do Número de Cópias de DNA/genética , Progressão da Doença , Humanos , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/patologia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Mieloma Múltiplo Latente/patologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...