Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 40(16): 4040-8, 2001 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-11466066

RESUMO

The (salen)Mn(III)-catalyzed epoxidation reaction mechanism has been investigated using density functional theory (DFT). There is considerable interest in and controversy over the mechanism of this reaction. The results of experimental studies have offered some support for three different reaction mechanisms: concerted, stepwise radical, and metallooxetane mediated. In this paper, a theoretical examination of the reaction suggests a novel mechanism that describes the reaction as a multichannel process combining both concerted and stepwise radical pathways. The competing channels have different spin states: the singlet, the triplet, and the quintet. The singlet reaction pathway corresponds to a concerted mechanism and leads exclusively to a cis epoxide product. In contrast, the triplet and quintet reactions follow a stepwise mechanism and lead to a product mixture of cis and trans epoxides. We show that the experimentally observed dependence of isomer product ratios on electronic effects connected with the substitution of the catalyst ligands is due to changing the relative position and, hence, the relative activities of the channels with different cis-trans yields. Because the results and conclusions of the present work dramatically differ from the results and conclusion of the recent DFT theoretical investigation (Linde, C.; Akermark, B; Norrby, P.-O.; Svensson, M. J. Am. Chem. Soc. 1999, 121, 5083.), we studied possible sources for the deep contradictions between the two works. The choice of the DFT functional and a model has been shown to be crucial for accurate results. Using high level ab initio calculations (coupled cluster-CCSD(T)), we show that the computational procedure employed in this study generates significantly more reliable numerical results. It is also shown that the smaller cationic model without a chlorine ligand that was used by Linde et al. is too oversimplified with respect to our larger neutral model. For this reason, using the cationic model led to a qualitatively wrong quintet reaction profile that played a key role in theoretical postulates in the earlier work.


Assuntos
Etilenodiaminas/química , Sequestradores de Radicais Livres/química , Manganês/química , Compostos Organometálicos/química , Catálise , Compostos de Epóxi/química , Modelos Químicos , Modelos Teóricos , Estrutura Molecular , Estereoisomerismo
2.
Proteins ; 37(2): 242-52, 1999 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-10584069

RESUMO

Thymidine phosphorylase (TP) is a dual substrate enzyme with two domains. Each domain binds a substrate. In the crystal structure of Escherichia coli TP, the two domains are arranged so that the two substrate binding sites are too far away for the two substrates to directly react. Molecular dynamics simulations reveal a different structure of the enzyme in which the two domains have moved to place the two substrates in close contact. This structure has a root-mean-square deviation from the crystal structure of 4.1 A. Quantum mechanical calculations using this structure find that the reaction can proceed by a direct nucleophilic attack with a low barrier. This mechanism is not feasible in the crystal structure environment and is consistent with the mechanism observed for other N-glycosidic enzymes. Important catalytic roles are found for the three highly conserved residues His 85, Arg 171, and Lys 190.


Assuntos
Escherichia coli/química , Timidina Fosforilase/química , Sítios de Ligação , Catálise , Cristalização , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Timidina Fosforilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA