Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nat Commun ; 15(1): 477, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216572

RESUMO

Schwann cell tumors are the most common cancers of the peripheral nervous system and can arise in patients with neurofibromatosis type-1 (NF-1) or neurofibromatosis type-2 (NF-2). Functional interactions between NF1 and NF2 and broader mechanisms underlying malignant transformation of the Schwann lineage are unclear. Here we integrate bulk and single-cell genomics, biochemistry, and pharmacology across human samples, cell lines, and mouse allografts to identify cellular de-differentiation mechanisms driving malignant transformation and treatment resistance. We find DNA methylation groups of Schwann cell tumors can be distinguished by differentiation programs that correlate with response to the MEK inhibitor selumetinib. Functional genomic screening in NF1-mutant tumor cells reveals NF2 loss and PAK activation underlie selumetinib resistance, and we find that concurrent MEK and PAK inhibition is effective in vivo. These data support a de-differentiation paradigm underlying malignant transformation and treatment resistance of Schwann cell tumors and elucidate a functional link between NF1 and NF2.


Assuntos
Neurilemoma , Neurofibromatoses , Neurofibromatose 1 , Neurofibromatose 2 , Animais , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromatoses/metabolismo , Neurofibromatoses/patologia , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibromatose 2/genética , Neurofibromatose 2/patologia , Células de Schwann/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
2.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-37609281

RESUMO

Single cell sequencing is useful for resolving complex systems into their composite cell types and computationally mining them for unique features that are masked in pooled sequencing. However, while commercial instruments have made single cell analysis widespread for mammalian cells, analogous tools for microbes are limited. Here, we present EASi-seq (Easily Accessible Single microbe sequencing). By adapting the single cell workflow of the commercial Mission Bio Tapestri instrument, this method allows for efficient sequencing of individual microbes' genomes. EASi-seq allows thousands of microbes to be sequenced per run and, as we show, can generate detailed atlases of human and environmental microbiomes. The ability to capture large shotgun genome datasets from thousands of single microbes provides new opportunities in discovering and analyzing species subpopulations. To facilitate this, we develop a companion bioinformatic pipeline that clusters microbes by similarity, improving whole genome assembly, strain identification, taxonomic classification, and gene annotation. In addition, we demonstrate integration of metagenomic contigs with the EASi-seq datasets to reduce capture bias and increase coverage. Overall, EASi-seq enables high quality single cell genomic data for microbiome samples using an accessible workflow that can be run on a commercially available platform.

3.
Trends Biotechnol ; 42(3): 353-368, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37777352

RESUMO

Droplet-based bioprinting has long struggled with the manipulation and dispensation of individual cells from a printhead, hindering the fabrication of artificial cellular structures with high precision. The integration of modern microfluidic modules into the printhead of a bioprinter is emerging as one approach to overcome this bottleneck. This convergence allows for high-accuracy manipulation and spatial control over placement of cells during printing, and enables the fabrication of cell arrays and hierarchical heterogenous microtissues, opening new applications in bioanalysis and high-throughput screening. In this review, we summarize recent developments in the use of microfluidics in droplet printing systems, with consideration of the working principles; present applications extended through microfluidic features; and discuss the future of this technology.


Assuntos
Bioimpressão , Microfluídica , Impressão Tridimensional , Dispositivos Lab-On-A-Chip , Poder Psicológico
4.
Res Sq ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37790580

RESUMO

Single cell sequencing is useful for resolving complex systems into their composite cell types and computationally mining them for unique features that are masked in pooled sequencing. However, while commercial instruments have made single cell analysis widespread for mammalian cells, analogous tools for microbes are limited. Here, we present EASi-seq (Easily Accessible Single microbe sequencing). By adapting the single cell workflow of the commercial Mission Bio Tapestri instrument, this method allows for efficient sequencing of individual microbes' genomes. EASi-seq allows thousands of microbes to be sequenced per run and, as we show, can generate detailed atlases of human and environmental microbiomes. The ability to capture large shotgun genome datasets from thousands of single microbes provides new opportunities in discovering and analyzing species subpopulations. To facilitate this, we develop a companion bioinformatic pipeline that clusters microbes by similarity, improving whole genome assembly, strain identification, taxonomic classification, and gene annotation. In addition, we demonstrate integration of metagenomic contigs with the EASi-seq datasets to reduce capture bias and increase coverage. Overall, EASi-seq enables high quality single cell genomic data for microbiome samples using an accessible workflow that can be run on a commercially available platform.

5.
JAMA Netw Open ; 6(8): e2329186, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589977

RESUMO

Importance: Central nervous system (CNS)-penetrant systemic therapies have significantly advanced care for patients with melanoma brain metastases. However, improved understanding of the molecular landscape and microenvironment of these lesions is needed to both optimize patient selection and advance treatment approaches. Objective: To evaluate how bulk and single-cell genomic features of melanoma brain metastases are associated with clinical outcome and treatment response. Design, Setting, and Participants: This cohort study analyzed bulk DNA sequencing and single nuclear RNA-sequencing data from resected melanoma brain metastases and included 94 consecutive patients with a histopathologically confirmed diagnosis of melanoma brain metastasis who underwent surgical resection at a single National Comprehensive Cancer Network cancer center in San Francisco, California, from January 1, 2009, to December 31, 2022. Exposure: A Clinical Laboratory Improvement Amendments-certified targeted sequencing assay was used to analyze tumor resection specimens, with a focus on BRAF V600E alteration. For frozen pathologic specimens from CNS treatment-naive patients undergoing surgical resection, commercial single nuclear RNA sequencing approaches were used. Main Outcomes and Measures: The primary outcome was overall survival (OS). Secondary outcomes included CNS progression-free survival (PFS), microenvironmental composition with decreased T-cell and macrophage populations, and responses to immunotherapy. Results: To correlate molecular status with clinical outcome, Kaplan-Meier survival analysis of 94 consecutive patients (median age, 64 years [range, 24-82 years]; 70 men [74%]) with targeted BRAF alteration testing showed worse median intracranial PFS (BRAF variant: 3.6 months [IQR, 0.1-30.6 months]; BRAF wildtype: 11.0 months [IQR, 0.8-81.5 months]; P < .001) and OS (BRAF variant: 9.8 months [IQR, 2.5-69.4 months]; BRAF wildtype: 23.2 months [IQR, 1.1-102.5 months]; P = .005; log-rank test) in BRAF V600E variant tumors. Multivariable Cox proportional hazards regression analysis revealed that BRAF V600E status was an independent variable significantly associated with both PFS (hazard ratio [HR], 2.65; 95% CI, 1.54-4.57; P < .001) and OS (HR, 1.96; 95% CI, 1.08-3.55; P = .03). For the 45 patients with resected melanoma brain metastases undergoing targeted DNA sequencing, molecular classification recapitulated The Cancer Genome Atlas groups (NRAS variant, BRAF variant, NF1 variant, and triple wildtype) with no subtype enrichment within the brain metastasis cohort. On a molecular level, BRAF V600E variant lesions were found to have a significantly decreased tumor mutation burden. Moreover, single nuclear RNA sequencing of treatment-naive BRAF V600E variant (n = 3) brain metastases compared with BRAF wildtype (n = 3) brain metastases revealed increased immune cell populations in BRAF wildtype tumors (mean [SD], 11% [4.1%] vs 3% [1.6%] CD45-positive cells; P = .04). Survival analysis of postoperative immunotherapy responses by BRAF status revealed that BRAF wildtype lesions were associated with a response to checkpoint inhibition (median OS: with immunotherapy, undefined; without immunotherapy, 13.0 months [range, 1.1-61.7 months]; P = .001; log-rank test) while BRAF variant lesions (median OS: with immunotherapy, 9.8 months [range, 2.9-39.8 months]; without immunotherapy, 9.5 months [range, 2.5-67.2 months]; P = .81; log-rank test) were not. Conclusions and Relevance: This molecular analysis of patients with resected melanoma brain metastases found that BRAF V600E alteration is an important translational biomarker associated with worse clinical outcomes, differential microenvironmental composition, and benefit from immunotherapy. Patients with BRAF V600E variant melanoma brain metastases may thus benefit from alternative CNS-penetrant systemic regimens.


Assuntos
Neoplasias Encefálicas , Melanoma , Masculino , Humanos , Pessoa de Meia-Idade , Estudos de Coortes , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Imunoterapia , Melanoma/genética , Melanoma/terapia , Microambiente Tumoral
6.
Lab Chip ; 23(15): 3479-3486, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37431299

RESUMO

Viral load quantitation is useful in clinical point-of-care settings to assess the status of patients with infectious disease, track response to treatment, and estimate infectiousness. However, existing methods for quantitating viral loads are complex and difficult to integrate into these settings. Here, we describe a simple, instrument-free approach for viral load quantitation suitable for point-of-care use. We develop a shaken digital droplet assay that can quantitate SARS-CoV2 with sensitivity comparable to gold standard qPCR.


Assuntos
COVID-19 , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , SARS-CoV-2 , Carga Viral/métodos , RNA Viral/análise , Sensibilidade e Especificidade
7.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292835

RESUMO

Mixed phenotype acute leukemia (MPAL) is a leukemia whose biologic drivers are poorly understood, therapeutic strategy remains unclear, and prognosis is poor. We performed multiomic single cell (SC) profiling of 14 newly diagnosed adult MPAL patients to characterize the immunophenotypic, genetic, and transcriptional landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. However, progressive acquisition of mutations is associated with increased expression of immunophenotypic markers of immaturity. Using SC transcriptional profiling, we find that MPAL blasts express a stem cell-like transcriptional profile distinct from other acute leukemias and indicative of high differentiation potential. Further, patients with the highest differentiation potential demonstrated inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in this cohort, is applicable to bulk RNA sequencing data and was predictive of survival in an independent patient cohort, suggesting utility for clinical risk stratification.

8.
Lab Chip ; 23(10): 2371-2377, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37070963

RESUMO

Delivery of double emulsions in air is crucial for their applications in mass spectrometry, bioanalytics, and material synthesis. However, while methods have been developed to generate double emulsions in air, controlled printing of double emulsion droplets has not been achieved yet. In this paper, we present an approach for in-air printing of double emulsions on demand. Our approach pre-encapsulates reagents in an emulsion that is reinjected into the device, and generates double emulsions in a microfluidic printhead with spatially patterned wettability. Our device allows sorting of ejected double emulsion droplets in real-time, allowing deterministic printing of each droplet to be selected with the desired inner cores. Our method provides a general platform for building printed double emulsion droplet arrays of defined composition at scale.

9.
Nat Biotechnol ; 41(11): 1557-1566, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36879006

RESUMO

Current single-cell RNA-sequencing approaches have limitations that stem from the microfluidic devices or fluid handling steps required for sample processing. We develop a method that does not require specialized microfluidic devices, expertise or hardware. Our approach is based on particle-templated emulsification, which allows single-cell encapsulation and barcoding of cDNA in uniform droplet emulsions with only a vortexer. Particle-templated instant partition sequencing (PIP-seq) accommodates a wide range of emulsification formats, including microwell plates and large-volume conical tubes, enabling thousands of samples or millions of cells to be processed in minutes. We demonstrate that PIP-seq produces high-purity transcriptomes in mouse-human mixing studies, is compatible with multiomics measurements and can accurately characterize cell types in human breast tissue compared to a commercial microfluidic platform. Single-cell transcriptional profiling of mixed phenotype acute leukemia using PIP-seq reveals the emergence of heterogeneity within chemotherapy-resistant cell subsets that were hidden by standard immunophenotyping. PIP-seq is a simple, flexible and scalable next-generation workflow that extends single-cell sequencing to new applications.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microfluídica , Humanos , Animais , Camundongos , Microfluídica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Genômica/métodos , Transcriptoma/genética
10.
Science ; 379(6636): 1023-1030, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893254

RESUMO

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Assuntos
Anfirregulina , Astrócitos , Comunicação Autócrina , Testes Genéticos , Técnicas Analíticas Microfluídicas , Microglia , Astrócitos/fisiologia , Testes Genéticos/métodos , Ensaios de Triagem em Larga Escala , Técnicas Analíticas Microfluídicas/métodos , Microglia/fisiologia , Anfirregulina/genética , Comunicação Autócrina/genética , Expressão Gênica , Humanos
11.
Nature ; 614(7947): 326-333, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599367

RESUMO

Multiple sclerosis is a chronic inflammatory disease of the central nervous system1. Astrocytes are heterogeneous glial cells that are resident in the central nervous system and participate in the pathogenesis of multiple sclerosis and its model experimental autoimmune encephalomyelitis2,3. However, few unique surface markers are available for the isolation of astrocyte subsets, preventing their analysis and the identification of candidate therapeutic targets; these limitations are further amplified by the rarity of pathogenic astrocytes. Here, to address these challenges, we developed focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), a high-throughput microfluidic cytometry method that combines encapsulation of cells in droplets, PCR-based detection of target nucleic acids and droplet sorting to enable in-depth transcriptomic analyses of cells of interest at single-cell resolution. We applied FIND-seq to study the regulation of astrocytes characterized by the splicing-driven activation of the transcription factor XBP1, which promotes disease pathology in multiple sclerosis and experimental autoimmune encephalomyelitis4. Using FIND-seq in combination with conditional-knockout mice, in vivo CRISPR-Cas9-driven genetic perturbation studies and bulk and single-cell RNA sequencing analyses of samples from mouse experimental autoimmune encephalomyelitis and humans with multiple sclerosis, we identified a new role for the nuclear receptor NR3C2 and its corepressor NCOR2 in limiting XBP1-driven pathogenic astrocyte responses. In summary, we used FIND-seq to identify a therapeutically targetable mechanism that limits XBP1-driven pathogenic astrocyte responses. FIND-seq enables the investigation of previously inaccessible cells, including rare cell subsets defined by unique gene expression signatures or other nucleic acid markers.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Microfluídica , Esclerose Múltipla , Ácidos Nucleicos , Análise da Expressão Gênica de Célula Única , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Astrócitos/patologia , Regulação da Expressão Gênica , Camundongos Knockout , Esclerose Múltipla/patologia , Microfluídica/métodos , Análise da Expressão Gênica de Célula Única/métodos , Ácidos Nucleicos/análise , Edição de Genes
12.
Nature ; 614(7947): 318-325, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599978

RESUMO

Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure1-3, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA+ memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling. Moreover, two groups of genes identified by network co-expression analysis were significantly associated with HIV-DNA+ cells. These genes (n = 145) accounted for just 0.81% of the measured transcriptome and included negative regulators of HIV transcription that were higher in HIV-DNA+ cells, positive regulators of HIV transcription that were lower in HIV-DNA+ cells, and other genes involved in RNA processing, negative regulation of mRNA translation, and regulation of cell state and fate. These findings reveal that HIV-infected memory CD4 T cells under antiretroviral therapy are a distinctive population with host gene expression patterns that favour HIV silencing, cell survival and cell proliferation, with important implications for the development of HIV cure strategies.


Assuntos
Linfócitos T CD4-Positivos , Regulação Viral da Expressão Gênica , Infecções por HIV , HIV-1 , Latência Viral , Humanos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA Viral/isolamento & purificação , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/isolamento & purificação , HIV-1/patogenicidade , Memória Imunológica , Microfluídica , Necroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico
13.
Lab Chip ; 22(23): 4735-4745, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36367139

RESUMO

In drop-based microfluidics, an aqueous sample is partitioned into drops using individual pump sources that drive water and oil into a drop-making device. Parallelization of drop-making devices is necessary to achieve high-throughput screening of multiple experimental conditions, especially in time-sensitive studies. Here, we present the plate-interfacing parallel encapsulation (PIPE) chip, a microfluidic chip designed to generate 50 to 90 µm diameter drops of up to 96 different conditions in parallel by interfacing individual drop makers with a standard 384-well microtiter plate. The PIPE chip is used to generate two types of optically barcoded drop libraries consisting of two-color fluorescent particle combinations: a library of 24 microbead barcodes and a library of 192 quantum dot barcodes. Barcoded combinations in the drop libraries are rapidly measured within a microfluidic device using fluorescence detection and distinct barcoded populations in the fluorescence drop data are identified using DBSCAN data clustering. Signal analysis reveals that particle size defines the source of dominant noise present in the fluorescence intensity distributions of the barcoded drop populations, arising from Poisson loading for microbeads and shot noise for quantum dots. A barcoded population from a drop library is isolated using fluorescence-activated drop sorting, enabling downstream analysis of drop contents. The PIPE chip can improve multiplexed high-throughput assays by enabling simultaneous encapsulation of barcoded samples stored in a microtiter plate and reducing sample preparation time.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Biblioteca Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Dispositivos Lab-On-A-Chip , Ensaios de Triagem em Larga Escala
14.
Front Bioinform ; 2: 867386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304283

RESUMO

While genome databases are nearing a complete catalog of species commonly inhabiting the human gut, their representation of intraspecific diversity is lacking for all but the most abundant and frequently studied taxa. Statistical deconvolution of allele frequencies from shotgun metagenomic data into strain genotypes and relative abundances is a promising approach, but existing methods are limited by computational scalability. Here we introduce StrainFacts, a method for strain deconvolution that enables inference across tens of thousands of metagenomes. We harness a "fuzzy" genotype approximation that makes the underlying graphical model fully differentiable, unlike existing methods. This allows parameter estimates to be optimized with gradient-based methods, speeding up model fitting by two orders of magnitude. A GPU implementation provides additional scalability. Extensive simulations show that StrainFacts can perform strain inference on thousands of metagenomes and has comparable accuracy to more computationally intensive tools. We further validate our strain inferences using single-cell genomic sequencing from a human stool sample. Applying StrainFacts to a collection of more than 10,000 publicly available human stool metagenomes, we quantify patterns of strain diversity, biogeography, and linkage-disequilibrium that agree with and expand on what is known based on existing reference genomes. StrainFacts paves the way for large-scale biogeography and population genetic studies of microbiomes using metagenomic data.

15.
Biofabrication ; 14(4)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35917810

RESUMO

Multicellular liver spheroids are 3D culture models useful in the development of therapies for liver fibrosis. While these models can recapitulate fibrotic disease, current methods for generating them via random aggregation are uncontrolled, yielding spheroids of variable size, function, and utility. Here, we report fabrication of precision liver spheroids with microfluidic flow cytometric printing. Our approach fabricates spheroids cell-by-cell, yielding structures with exact numbers of different cell types. Because spheroid function depends on composition, our precision spheroids have superior functional uniformity, allowing more accurate and statistically significant screens compared to randomly generated spheroids. The approach produces thousands of spheroids per hour, and thus affords a scalable platform by which to manufacture single-cell precision spheroids for disease modeling and high throughput drug testing.


Assuntos
Técnicas de Cultura de Células , Microfluídica , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Fígado , Microfluídica/métodos , Impressão Tridimensional , Esferoides Celulares
16.
Nat Commun ; 13(1): 3696, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760790

RESUMO

Pluripotent embryonic stem cells have a unique cell cycle structure with a suppressed G1/S restriction point and little differential expression across the cell cycle phases. Here, we evaluate the link between G1/S restriction point activation, phasic gene expression, and cellular differentiation. Expression analysis reveals a gain in phasic gene expression across lineages between embryonic days E7.5 and E9.5. Genetic manipulation of the G1/S restriction point regulators miR-302 and P27 respectively accelerates or delays the onset of phasic gene expression in mouse embryos. Loss of miR-302-mediated p21 or p27 suppression expedites embryonic stem cell differentiation, while a constitutive Cyclin E mutant blocks it. Together, these findings uncover a causal relationship between emergence of the G1/S restriction point with a gain in phasic gene expression and cellular differentiation.


Assuntos
MicroRNAs , Animais , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Diferenciação Celular/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fase G1/genética , Expressão Gênica , Camundongos , MicroRNAs/genética
17.
Anal Chem ; 94(21): 7475-7482, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35578791

RESUMO

Current methods for fabricating microparticles offer limited control over size and shape. Here, we demonstrate a droplet microfluidic method to form polyhedral microparticles with controlled concavity. By manipulating Laplace pressure, buoyancy, and particle rheology, we generate microparticles with diverse shapes and curvatures. Additionally, we demonstrate the particles provide increased capture efficiency when used for particle-templated emulsification. Our approach enables microparticles with enhanced chemical and biological functionality.


Assuntos
Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/métodos , Microfluídica , Tamanho da Partícula , Reologia
18.
Nat Biomed Eng ; 6(8): 1004-1012, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35347274

RESUMO

The human immunodeficiency virus (HIV) integrates its genome into that of infected cells and may enter an inactive state of reversible latency that cannot be targeted using antiretroviral therapy. Sequencing such a provirus and the adjacent host junctions in individual cells may elucidate the mechanisms of the persistence of infected cells, but this is difficult owing to the 150-million-fold higher amount of background human DNA. Here we show that full-length proviruses connected to their contiguous HIV-host DNA junctions can be assembled via a high-throughput microfluidic assay where droplet-based whole-genome amplification of HIV DNA in its native context is followed by a polymerase chain reaction (PCR) to tag droplets containing proviruses for sequencing. We assayed infected cells from people with HIV receiving suppressive antiretroviral therapy, resulting in the detection and sequencing of paired proviral genomes and integration sites, 90% of which were not recovered by commonly used nested-PCR methods. The sequencing of individual proviral genomes with their integration sites could improve the genetic analysis of persistent HIV-infected cell reservoirs.


Assuntos
Infecções por HIV , HIV-1 , DNA Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , HIV-1/genética , Humanos , Microfluídica , Provírus/genética
19.
Biomicrofluidics ; 16(1): 014102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35145570

RESUMO

Droplet microfluidics enables powerful analytic capabilities but often requires workflows involving macro- and microfluidic processing steps that are cumbersome to perform manually. Here, we demonstrate the automation of droplet microfluidics with commercial fluid-handling robotics. The workflows incorporate common microfluidic devices including droplet generators, mergers, and sorters and utilize the robot's native capabilities for thermal control, incubation, and plate scanning. The ability to automate microfluidic devices using commercial fluid handling will speed up the integration of these methods into biological workflows.

20.
Adv Mater ; 34(12): e2108194, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35045587

RESUMO

Patterned surfaces can enhance the sensitivity of laser desorption ionization mass spectrometry by segregating and concentrating analytes, but their fabrication can be challenging. Here, a simple method to fabricate substrates patterned with micrometer-scale wells that yield more accurate and sensitive mass spectrometry measurements compared to flat surfaces is described. The wells can also concentrate and localize cells and beads for cell-based assays.


Assuntos
Lasers , Luz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...