Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 30(12): 1597-1609.e8, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016468

RESUMO

We report the analysis of 1 year of data from the first cohort of 15 patients enrolled in an open-label, first-in-human, dose-escalation phase I study (ClinicalTrials.gov: NCT03282760, EudraCT2015-004855-37) to determine the feasibility, safety, and tolerability of the transplantation of allogeneic human neural stem/progenitor cells (hNSCs) for the treatment of secondary progressive multiple sclerosis. Participants were treated with hNSCs delivered via intracerebroventricular injection in combination with an immunosuppressive regimen. No treatment-related deaths nor serious adverse events (AEs) were observed. All participants displayed stability of clinical and laboratory outcomes, as well as lesion load and brain activity (MRI), compared with the study entry. Longitudinal metabolomics and lipidomics of biological fluids identified time- and dose-dependent responses with increased levels of acyl-carnitines and fatty acids in the cerebrospinal fluid (CSF). The absence of AEs and the stability of functional and structural outcomes are reassuring and represent a milestone for the safe translation of stem cells into regenerative medicines.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Células-Tronco Neurais , Humanos , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla/terapia , Transplante Autólogo
2.
Front Neurosci ; 17: 1073689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816109

RESUMO

Since the discovery of Neural Stem Cells (NSCs) there are still mechanism to be clarified, such as the role of mitochondrial metabolism in the regulation of endogenous adult neurogenesis and its implication in neurodegeneration. Although stem cells require glycolysis to maintain their stemness, they can perform oxidative phosphorylation and it is becoming more and more evident that mitochondria are central players, not only for ATP production but also for neuronal differentiation's steps regulation, through their ability to handle cellular redox state, intracellular signaling, epigenetic state of the cell, as well as the gut microbiota-brain axis, upon dietary influences. In this scenario, the 8-oxoguanine DNA glycosylase (OGG1) repair system would link mitochondrial DNA integrity to the modulation of neural differentiation. On the other side, there is an increasing interest in NSCs generation, from induced pluripotent stem cells, as a clinical model for neurodegenerative diseases (NDs), although this methodology still presents several drawbacks, mainly related to the reprogramming process. Indeed, high levels of reactive oxygen species (ROS), associated with telomere shortening, genomic instability, and defective mitochondrial dynamics, lead to pluripotency limitation and reprogramming efficiency's reduction. Moreover, while a physiological or moderate ROS increase serves as a signaling mechanism, to activate differentiation and suppress self-renewal, excessive oxidative stress is a common feature of NDs and aging. This ROS-dependent regulatory effect might be modulated by newly identified ROS suppressors, including the NAD+-dependent deacetylase enzymes family called Sirtuins (SIRTs). Recently, the importance of subcellular localization of NAD synthesis has been coupled to different roles for NAD in chromatin stability, DNA repair, circadian rhythms, and longevity. SIRTs have been described as involved in the control of both telomere's chromatin state and expression of nuclear gene involved in the regulation of mitochondrial gene expression, as well as in several NDs and aging. SIRTs are ubiquitously expressed in the mammalian brain, where they play important roles. In this review we summarize the current knowledge on how SIRTs-dependent modulation of mitochondrial metabolism could impact on neurogenesis and neurodegeneration, focusing mainly on ROS function and their role in SIRTs-mediated cell reprogramming and telomere protection.

3.
PLoS One ; 15(8): e0236164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760085

RESUMO

Hyaluronan (HA) is a nonsulfated glycosaminoglycan that has been widely used for biomedical applications. Here, we have analyzed the effect of HA on the rescue of primary cells under stress as well as its potential to recover muscle atrophy and validated the developed model in vitro using primary muscle cells derived from rats. The potentials of different HAs were elucidated through comparative analyses using pharmaceutical grade a) high (HHA) and b) low molecular weight (LHA) hyaluronans, c) hybrid cooperative complexes (HCC) of HA in three experimental set-ups. The cells were characterized based on the expression of myogenin, a muscle-specific biomarker, and the proliferation was analyzed using Time-Lapse Video Microscopy (TLVM). Cell viability in response to H2O2 challenge was evaluated by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the expression of the superoxide dismutase enzyme (SOD-2) was assessed by western blotting. Additionally, in order to establish an in vitro model of atrophy, muscle cells were treated with tumor necrosis factor-alpha (TNF-α), along with hyaluronans. The expression of Atrogin, MuRF-1, nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB), and Forkhead-box-(Fox)-O-3 (FoxO3a) was evaluated by western blotting to elucidate the molecular mechanism of atrophy. The results showed that HCC and HHA increased cell proliferation by 1.15 and 2.3 folds in comparison to un-treated cells (control), respectively. Moreover, both pre- and post-treatments of HAs restored the cell viability, and the SOD-2 expression was found to be reduced by 1.5 fold in HA-treated cells as compared to the stressed condition. Specifically in atrophic stressed cells, HCC revealed a noteworthy beneficial effect on the myogenic biomarkers indicating that it could be used as a promising platform for tissue regeneration with specific attention to muscle cell protection against stressful agents.


Assuntos
Ácido Hialurônico/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Atrofia Muscular/terapia , Medicina Regenerativa/métodos , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/metabolismo , Géis , Humanos , Ácido Hialurônico/química , Peróxido de Hidrogênio/toxicidade , Microscopia Intravital , Peso Molecular , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/patologia , Miogenina/análise , Miogenina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Ratos , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo , Imagem com Lapso de Tempo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA