Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
NPJ Biofilms Microbiomes ; 9(1): 48, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438354

RESUMO

Evidence indicates that the microbiome plays a significant role in HIV immunopathogenesis and associated complications. This study aimed to characterize the oral and anal microbiome of Men who have Sex with Men (MSM) and Transgender Women (TGW), with and without HIV. One hundred and thirty oral and anal DNA-derived samples were obtained from 78 participants and subjected to shotgun metagenomics sequencing for further microbiome analysis. Significant differences in the microbiome composition were found among subjects associated with HIV infection, gender, sex behavior, CD4+ T-cell counts, antiretroviral therapy (ART), and the presence of HPV-associated precancerous anal lesions. Results confirm the occurrence of oncogenic viromes in this high HIV-risk population. The oral microbiome in HIV-associated cases exhibited an enrichment of bacteria associated with periodontal disease pathogenesis. Conversely, anal bacteria showed a significant decrease in HIV-infected subjects (Coprococcus comes, Finegoldia magna, Blautia obeum, Catenibacterium mitsuokai). TGW showed enrichment in species related to sexual transmission, which concurs that most recruited TGW are or have been sex workers. Prevotella bivia and Fusobacterium gonidiaformans were positively associated with anal precancerous lesions among HIV-infected subjects. The enrichment of Holdemanella biformis and C. comes was associated with detectable viral load and ART-untreated patients. Metabolic pathways were distinctly affected by predominant factors linked to sexual behavior or HIV pathogenesis. Gene family analysis identified bacterial gene signatures as potential prognostic and predictive biomarkers for HIV/AIDS-associated malignancies. Conclusions: Identified microbial features at accessible sites are potential biomarkers for predicting precancerous anal lesions and therapeutic targets for HIV immunopathogenesis.


Assuntos
Infecções por HIV , Microbiota , Minorias Sexuais e de Gênero , Masculino , Humanos , Feminino , Infecções por HIV/complicações , Homossexualidade Masculina , Redes e Vias Metabólicas
2.
Cell Death Differ ; 30(4): 906-921, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693903

RESUMO

Non-melanoma skin cancer (NMSC) has risen dramatically as a result of chronic exposure to sunlight ultraviolet (UV) radiation, climatic changes and clinical conditions associated with immunosuppression. In spite of considerable progress, our understanding of the mechanisms that control NMSC development and their associated molecular and immunological landscapes is still limited. Here we demonstrated a critical role for galectin-7 (Gal-7), a ß-galactoside-binding protein preferentially expressed in skin tissue, during NMSC development. Transgenic mice (Tg46) overexpressing Gal-7 in keratinocytes showed higher number of papillomas compared to WT mice or mice lacking Gal-7 (Lgals7-/-) when subjected to a skin carcinogenesis protocol, in which tumor initiator 7,12-dimethylbenz[a]anthracene (DMBA) and tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) were sequentially administered. RNAseq analysis of Tg46 tumor lesions revealed a unique profile compatible with cells of the myelomonocytic lineage infiltrating these tumors, an effect that was substantiated by a higher number of CD11b+Gr1+ cells in tumor-draining lymph nodes. Heightened c-Met activation and Cxcl-1 expression in Tg46 lesions suggested a contribution of this pathway to the recruitment of these cells. Remarkably, Gal-7 bound to the surface of CD11b+Ly6ChiLy6Glo monocytic myeloid cells and enhanced their immunosuppressive activity, as evidenced by increased IL-10 and TGF-ß1 secretion, and higher T-cell inhibitory activity. In vivo, carcinogen-treated Lgals7-/- animals adoptively transferred with Gal-7-conditioned monocytic myeloid cells developed higher number of papillomas, whereas depletion of these cells in Tg46-treated mice led to reduction in the number of tumors. Finally, human NMSC biopsies showed increased LGALS7 mRNA and Gal-7 protein expression and displayed transcriptional profiles associated with myeloid programs, accompanied by elevated CXCL1 expression and c-Met activation. Thus, Gal-7 emerges as a critical mediator of skin carcinogenesis and a potential therapeutic target in human NMSC.


Assuntos
Papiloma , Neoplasias Cutâneas , Camundongos , Animais , Humanos , Carcinógenos , Neoplasias Cutâneas/patologia , Papiloma/patologia , Carcinogênese/genética , Camundongos Transgênicos , Galectinas/genética , Pele/metabolismo , Imunidade Inata
3.
Clin Cancer Res ; 29(5): 866-877, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36269797

RESUMO

PURPOSE: Preclinical data suggest that antiprogestins inhibit the growth of luminal breast carcinomas that express higher levels of progesterone receptor isoform A (PRA) than isoform B (PRB). Thus, we designed a presurgical window of opportunity trial to determine the therapeutic effects of mifepristone in patients with breast cancer, based on their high PRA/PRB isoform ratio (MIPRA; NCT02651844). PATIENTS AND METHODS: Twenty patients with luminal breast carcinomas with PRA/PRB > 1.5 (determined by Western blots), and PR ≥ 50%, naïve from previous treatment, were included for mifepristone treatment (200 mg/day orally; 14 days). Core needle biopsies and surgical samples were formalin fixed for IHC studies, while others were snap-frozen to perform RNA sequencing (RNA-seq), proteomics, and/or Western blot studies. Plasma mifepristone levels were determined using mass spectrometry. The primary endpoint was the comparison of Ki67 expression pretreatment and posttreatment. RESULTS: A 49.62% decrease in Ki67 staining was observed in all surgical specimens compared with baseline (P = 0.0003). Using the prespecified response parameter (30% relative reduction), we identified 14 of 20 responders. Mifepristone induced an increase in tumor-infiltrating lymphocytes; a decrease in hormone receptor and pSer118ER expression; and an increase in calregulin, p21, p15, and activated caspase 3 expression. RNA-seq and proteomic studies identified downregulated pathways related to cell proliferation and upregulated pathways related to immune bioprocesses and extracellular matrix remodeling. CONCLUSIONS: Our results support the use of mifepristone in patients with luminal breast cancer with high PRA/PRB ratios. The combined effects of mifepristone and estrogen receptor modulators warrant clinical evaluation to improve endocrine treatment responsiveness in these patients. See related commentary by Ronchi and Brisken, p. 833.


Assuntos
Neoplasias da Mama , Mifepristona , Humanos , Feminino , Mifepristona/farmacologia , Mifepristona/uso terapêutico , Receptores de Progesterona/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteômica , Antígeno Ki-67 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Bioinformatics ; 38(3): 866-868, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34586379

RESUMO

MOTIVATION: Large-scale cancer genome projects have generated genomic, transcriptomic, epigenomic and clinicopathological data from thousands of samples in almost every human tumor site. Although most omics data and their associated resources are publicly available, its full integration and interpretation to dissect the sources of gene expression modulation require specialized knowledge and software. RESULTS: We present Multiomix, an interactive cloud-based platform that allows biologists to identify genetic and epigenetic events associated with the transcriptional modulation of cancer-related genes through the analysis of multi-omics data available on public functional genomic databases or user-uploaded datasets. Multiomix consists of an integrated set of functions, pipelines and a graphical user interface that allows retrieval, aggregation, analysis and visualization of different omics data sources. After the user provides the data to be analyzed, Multiomix identifies all significant correlations between mRNAs and non-mRNA genomics features (e.g. miRNA, DNA methylation and CNV) across the genome, the predicted sequence-based interactions (e.g. miRNA-mRNA) and their associated prognostic values. AVAILABILITY AND IMPLEMENTATION: Multiomix is available at https://www.multiomix.org. The source code is freely available at https://github.com/omics-datascience/multiomix. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
MicroRNAs , Neoplasias , Humanos , Epigenômica , Computação em Nuvem , Genômica , Neoplasias/genética , Software , MicroRNAs/genética , Transcriptoma , Oncogenes
5.
Cancer Res Commun ; 2(11): 1372-1387, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36818489

RESUMO

Aberrant expression of protein kinase C (PKC) isozymes is a hallmark of cancer. The different members of the PKC family control cellular events associated with cancer development and progression. Whereas the classical/conventional PKCα isozyme has been linked to tumor suppression in most cancer types, here we demonstrate that this kinase is required for the mitogenic activity of aggressive human prostate cancer cells displaying aberrantly high PKCα expression. Immunohistochemical analysis showed abnormal up-regulation of PKCα in human primary prostate tumors. Interestingly, silencing PKCα expression from aggressive prostate cancer cells impairs cell cycle progression, proliferation and invasion, as well as their tumorigenic activity in a mouse xenograft model. Mechanistic analysis revealed that PKCα exerts a profound control of gene expression, particularly over genes and transcriptional networks associated with cell cycle progression and E2F transcription factors. PKCα RNAi depletion from PC3 prostate cancer cells led to a reduction in the expression of pro-inflammatory cytokine and epithelial-to-mesenchymal transition (EMT) genes, as well as a prominent down-regulation of the immune checkpoint ligand PD-L1. This PKCα-dependent gene expression profile was corroborated in silico using human prostate cancer databases. Our studies established PKCα as a multifunctional kinase that plays pleiotropic roles in prostate cancer, particularly by controlling genetic networks associated with tumor growth and progression. The identification of PKCα as a pro-tumorigenic kinase in human prostate cancer provides strong rationale for the development of therapeutic approaches towards targeting PKCα or its effectors.


Assuntos
Neoplasias da Próstata , Proteína Quinase C-alfa , Masculino , Humanos , Camundongos , Animais , Proteína Quinase C-alfa/genética , Redes Reguladoras de Genes , Proteína Quinase C/genética , Divisão Celular , Neoplasias da Próstata/genética , Isoenzimas/genética
6.
Front Oncol ; 11: 783211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869037

RESUMO

The long-non-coding HOX transcript antisense intergenic RNA (HOTAIR) was identified as significantly upregulated in breast ductal carcinoma in situ (DCIS). The aim of this study was to characterize the phenotypic effects and signaling pathways modulated by HOTAIR in early-stage breast cancer progression. We determined that HOTAIR induces premalignant phenotypic changes by increasing cell proliferation, migration, invasion and in vivo growth in normal and DCIS breast cell lines. Transcriptomic studies (RNA-seq) identified the main signaling pathways modulated by HOTAIR which include bioprocesses related to epithelial to mesenchymal transition, cell migration, extracellular matrix remodeling and activation of several signaling pathways (HIF1A, AP1 and FGFR). Similar pathways were identified as activated in primary invasive breast carcinomas with HOTAIR over-expression. We conclude that HOTAIR over-expression behaves as a positive regulator of cell growth and migration both in normal and DCIS breast cells involved with early-stage breast cancer progression.

7.
Cell Rep ; 37(5): 109905, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731623

RESUMO

Despite the undisputable role of the small GTPase Rac1 in the regulation of actin cytoskeleton reorganization, the Rac guanine-nucleotide exchange factors (Rac-GEFs) involved in Rac1-mediated motility and invasion in human lung adenocarcinoma cells remain largely unknown. Here, we identify FARP1, ARHGEF39, and TIAM2 as essential Rac-GEFs responsible for Rac1-mediated lung cancer cell migration upon EGFR and c-Met activation. Noteworthily, these Rac-GEFs operate in a non-redundant manner by controlling distinctive aspects of ruffle dynamics formation. Mechanistic analysis reveals a leading role of the AXL-Gab1-PI3K axis in conferring pro-motility traits downstream of EGFR. Along with the positive association between the overexpression of Rac-GEFs and poor lung adenocarcinoma patient survival, we show that FARP1 and ARHGEF39 are upregulated in EpCam+ cells sorted from primary human lung adenocarcinomas. Overall, our study reveals fundamental insights into the complex intricacies underlying Rac-GEF-mediated cancer cell motility signaling, hence underscoring promising targets for metastatic lung cancer therapy.


Assuntos
Adenocarcinoma de Pulmão/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias Pulmonares/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Idoso , Movimento Celular , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Proteína Tirosina Quinases/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Receptor Tirosina Quinase Axl
8.
Front Oncol ; 11: 687629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222014

RESUMO

Regulatory pathways involving non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNA), have gained great relevance due to their role in the control of gene expression modulation. Using RNA sequencing of KSHV Bac36 transfected mouse endothelial cells (mECK36) and tumors, we have analyzed the host and viral transcriptome to uncover the role lncRNA-miRNA-mRNA driven networks in KSHV tumorigenesis. The integration of the differentially expressed ncRNAs, with an exhaustive computational analysis of their experimentally supported targets, led us to dissect complex networks integrated by the cancer-related lncRNAs Malat1, Neat1, H19, Meg3, and their associated miRNA-target pairs. These networks would modulate pathways related to KSHV pathogenesis, such as viral carcinogenesis, p53 signaling, RNA surveillance, and cell cycle control. Finally, the ncRNA-mRNA analysis allowed us to develop signatures that can be used to an appropriate identification of druggable gene or networks defining relevant AIDS-KS therapeutic targets.

9.
Genomics ; 113(4): 2614-2622, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118379

RESUMO

Pregnancy alters B cell development and function. B cell activation is initiated by antigens binding to the BCR leading to B cell survival, proliferation, antigen presentation and antibody production. We performed a genome-wide transcriptome profiling of splenic B cells from pregnant (P) and non-pregnant (NP) mice and identified 1136 genes exhibiting differential expression in B cells from P mice (625 up- and 511 down-regulated) compared to NP animals. In silico analysis showed that B cell activation through BCR seems to be lowered during pregnancy. RT-qPCR analysis confirmed these data. Additionally, B cells from pregnant women stimulated in vitro through BCR produced lower levels of inflammatory cytokines compared to non-pregnant women. Our results suggest that B cells acquire a state of hypo-responsiveness during gestation, probably as part of the maternal immune strategy for fetal tolerance but also open new avenues to understand why pregnant women are at highest risk for infections.


Assuntos
Linfócitos B , Transcriptoma , Animais , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Ativação Linfocitária , Camundongos , Gravidez
10.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34006646

RESUMO

Colorectal cancer (CRC) represents the third most common malignancy and the second leading cause of cancer-related deaths worldwide. Although immunotherapy has taken center stage in mainstream oncology, it has shown limited clinical efficacy in CRC, generating an urgent need for discovery of new biomarkers and potential therapeutic targets. Galectin-1 (Gal-1), an endogenous glycan-binding protein, induces tolerogenic programs and contributes to tumor cell evasion of immune responses. Here, we investigated the relevance of Gal-1 in CRC and explored its modulatory activity within the CD8+ regulatory T cell (Treg) compartment. Mice lacking Gal-1 (Lgals1-/- ) developed a lower number of tumors and showed a decreased frequency of a particular population of CD8+CD122+PD-1+ Tregs in the azoxymethane-dextran sodium sulfate model of colitis-associated CRC. Moreover, silencing of tumor-derived Gal-1 in the syngeneic CT26 CRC model resulted in reduced number and attenuated immunosuppressive capacity of CD8+CD122+PD-1+ Tregs, leading to slower tumor growth. Moreover, stromal Gal-1 also influenced the fitness of CD8+ Tregs, highlighting the contribution of both tumor and stromal-derived Gal-1 to this immunoregulatory effect. Finally, bioinformatic analysis of a colorectal adenocarcinoma from The Cancer Genome Atlas dataset revealed a particular signature characterized by high CD8+ Treg score and elevated Gal-1 expression, which delineates poor prognosis in human CRC. Our findings identify CD8+CD122+PD-1+ Tregs as a target of the immunoregulatory activity of Gal-1, suggesting a potential immunotherapeutic strategy for the treatment of CRC.


Assuntos
Adenocarcinoma/genética , Linfócitos T CD8-Positivos/imunologia , Colite/genética , Neoplasias Colorretais/genética , Galectina 1/genética , Linfócitos T Reguladores/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Animais , Atlas como Assunto , Azoximetano/administração & dosagem , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colite/imunologia , Colite/mortalidade , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Sulfato de Dextrana/administração & dosagem , Modelos Animais de Doenças , Galectina 1/deficiência , Galectina 1/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/imunologia , Camundongos , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais , Análise de Sobrevida , Linfócitos T Reguladores/patologia , Carga Tumoral
11.
Transl Oncol ; 14(6): 101084, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33789221

RESUMO

Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy associated with high-risk Human papillomavirus (HPV) infection. Despite improved outcomes in non-metastatic ASCC, definitive chemoradiotherapy constitutes the standard treatment for localized disease. Evidences for predictive and prognostic biomarkers are limited. Here, we performed a viral, immune, and mutational characterization of 79 non-metastatic ASCC patients with complete definitive chemoradiotherapy. HPV-16 was detected in 91% of positive cases in single infections (78%) or in coinfections with multiple genotypes (22%). Fifty-four percent of non-metastatic ASCC cases displayed mutations affecting cancer driver genes such as PIK3CA (21% of cases), TP53 (15%), FBXW7 (9%), and APC (6%). PD-L1 expression was detected in 57% of non-metastatic ASCC. Increased PD-L1 positive cases (67%) were detected in patients with complete response compared with non-complete response to treatment (37%) (p = 0.021). Furthermore, patients with PD-L1 positive tumors were significantly associated with better disease-free survival (DFS) and overall survival (OS) compared with patients with PD-L1 negative tumors (p = 0.006 and p = 0.002, respectively). PD-L1 expression strongly impacts CR rate and survival of non-metastatic ASCC patients after standard definitive chemoradiotherapy. PD-L1 expression could be used to stratify good versus poor responders avoiding the associated morbidity with abdominal perineal resection.

12.
Diabetes Metab Res Rev ; 37(1): e3359, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32500584

RESUMO

AIM: To identify new transcriptomic alterations in pancreatic islets associated with metabolic dysfunctions in people with prediabetes (PD)/type 2 diabetes (T2D). MATERIALS AND METHODS: We collected information from public data repositories T2D related microarray datasets from pancreatic islets. We identified Differential Expressed Genes (DEGs) in non-diabetic (ND) vs people with T2D in each study. To identify relevant DEGs in T2D, we selected those that varied consistently in the different studies for further meta-analysis and functional enrichment analysis. DEGs were also evaluated at the PD stage. RESULTS: A total of seven microarray datasets were collected and analysed to find the DEGs in each study and meta-analysis was performed with 245 ND and 96 T2D cases. We identified 55 transcriptional alterations potentially associated with specific metabolic dysfunctions in T2D. Meta-analysis showed that 87% of transcripts identified as DEGs (48 out of 55) were confirmed as having statistically significant up- or down-modulation in T2D compared to ND. Notably, nine of these DEGs have not been previously reported as dysregulated in pancreatic islets from people with T2D. Consistently, the most significantly enriched pathways were related to the metabolism and/or development/maintenance of ß-cells. Eighteen of the 48 selected DEGs (38%) showed an altered expression in islets from people with PD. CONCLUSIONS: These results provide new evidence to interpret the pathogenesis of T2D and the transition from PD to T2D. Further studies are necessary to validate its potential use for the development/implementation of efficient new strategies for the prevention, diagnosis/prognosis and treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Transcriptoma , Diabetes Mellitus Tipo 2/genética , Perfilação da Expressão Gênica , Humanos , Ilhotas Pancreáticas , Estado Pré-Diabético/genética , Transcriptoma/genética
13.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049922

RESUMO

Long intergenic non-protein coding RNA 885 (LINC00885) was identified as significantly upregulated in breast ductal carcinoma in situ (DCIS). The aim of this study was to characterize the phenotypic effects and signaling pathways modulated by LINC00885 in non-invasive and invasive breast cancer models. We determined that LINC00885 induces premalignant phenotypic changes by increasing cell proliferation, motility, migration and altering 3D growth in normal and DCIS breast cell lines. Transcriptomic studies (RNA-seq) identified the main signaling pathways modulated by LINC00885, which include bioprocesses related to TP53 signaling pathway and proliferative signatures such as activation of EREG, EGFR and FOXM1 pathways. LINC00885 silencing in breast cancer lines overexpressing this lncRNA leads to downregulation of proliferation related transcripts such as EREG, CMYC, CCND1 and to significant decrease in cell migration and motility. TCGA-BRCA data analyses show an association between high LINC00885 expression and worse overall survival in patients with primary invasive breast carcinomas (p = 0.024), suggesting that the pro-tumorigenic effects of LINC00885 overexpression persist post-invasion. We conclude that LINC00885 behaves as a positive regulator of cell growth both in normal and DCIS breast cells possibly operating as a ceRNA and representing a novel oncogenic lncRNA associated with early stage breast cancer progression.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/metabolismo , Progressão da Doença , Oncogenes , RNA Longo não Codificante/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinoma Intraductal não Infiltrante/patologia , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Células MCF-7 , Invasividade Neoplásica/genética , Estadiamento de Neoplasias , Interferência de RNA , RNA Longo não Codificante/metabolismo , Transcriptoma , Regulação para Cima/genética
14.
Cancer Res ; 80(23): 5166-5173, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32994205

RESUMO

Non-small cell lung cancer (NSCLC) is the most frequent subtype of lung cancer and remains a highly lethal malignancy and one of the leading causes of cancer-related deaths worldwide. Mutant KRAS is the prevailing oncogenic driver of lung adenocarcinoma, the most common histologic form of NSCLC. In this study, we examined the role of PKCϵ, an oncogenic kinase highly expressed in NSCLC and other cancers, in KRAS-driven tumorigenesis. Database analysis revealed an association between PKCϵ expression and poor outcome in patients with lung adenocarcinoma specifically harboring KRAS mutations. A PKCϵ-deficient, conditionally activatable allele of oncogenic Kras (LSL-KrasG12D ;PKCϵ-/- mice) demonstrated the requirement of PKCϵ for Kras-driven lung tumorigenesis in vivo, which was consistent with impaired transformed growth reported in PKCϵ-deficient KRAS-dependent NSCLC cells. Moreover, PKCϵ-knockout mice were found to be less susceptible to lung tumorigenesis induced by benzo[a]pyrene, a carcinogen that induces mutations in Kras. Mechanistic analysis using RNA sequencing revealed little overlap for PKCϵ and KRAS in the control of genes and biological pathways relevant in NSCLC, suggesting that a permissive role of PKCϵ in KRAS-driven lung tumorigenesis may involve nonredundant mechanisms. Our results thus, highlight the relevance and potential of targeting PKCϵ for lung cancer therapeutics. SIGNIFICANCE: These findings demonstrate that KRAS-mediated tumorigenesis requires PKCϵ expression and highlight the potential for developing PKCϵ-targeted therapies for oncogenic RAS-driven malignancies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteína Quinase C-épsilon/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Animais , Benzo(a)pireno/toxicidade , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Proteína Quinase C-épsilon/genética
15.
JAMA Ophthalmol ; 138(5): 569-574, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191268

RESUMO

Importance: Comprehensive understanding of the genomic and gene-expression differences between retinoblastoma tumors from patients with bilateral disease may help to characterize risk and optimize treatment according to individual tumor characteristics. Objective: To compare the genomic features between each eye and a specimen from an orbital relapse in patients with bilateral retinoblastoma. Design, Setting, and Participants: In this case, 2 patients with retinoblastoma underwent upfront bilateral enucleation. Tumor samples were subjected to genomic and gene-expression analysis. Primary cell cultures were established from both of the tumors of 1 patient and were used for gene-expression studies. Main Outcomes and Measures: Whole-exome sequencing was performed on an Illumina platform for fresh tumor samples and DNA arrays (CytoScan or OncoScan) were used for paraffin-embedded samples and cell lines. Gene-expression analysis was performed using Agilent microarrays. Germinal and somatic alterations, copy number alterations, and differential gene expression were assessed. Results: After initial bilateral enucleation, patient 1 showed massive choroidal and laminar optic nerve infiltration, while patient 2 showed choroidal and laminar optic nerve invasion. Patient 1 developed left-eye orbital recurrence and bone marrow metastasis less than 1 year after enucleation. Both ocular tumors showed gains on 1q and 6p but presented other distinct genomic alterations, including an additional gain in 2p harboring the N-myc proto-oncogene (MYCN) in the left tumor and orbital recurrence. Similar copy number alterations between the orbital recurrence and the left eye supported the origin of the relapse, with an additional 11q loss only detected in the orbital relapse. Specimens from patient 2 showed common copy number gains and losses, but further evolution rendered a 2p gain spanning MYCN in the left tumor. For this patient, microarray expression analysis showed differential expression of the MYCN and the forkhead box protein G1 (FOXG1) gene pathways between the left and right tumors. Conclusions and Relevance: Differential genomic and gene expression features were observed between tumors in 2 patients with bilateral disease, confirming intereye heterogeneity that might be considered if targeted therapies are used in such patients. Chromosomal alteration profile supported the origin of the orbital recurrence from the homolateral eye in 1 patient. Loss in chromosome 11q may have been associated with extraocular relapse in this patient.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Heterogeneidade Genética , Genômica , Neoplasias da Retina/genética , Retinoblastoma/genética , Transcriptoma , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , DNA de Neoplasias/genética , Enucleação Ocular , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Perda de Heterozigosidade , Polimorfismo de Nucleotídeo Único , Proto-Oncogene Mas , Neoplasias da Retina/patologia , Retinoblastoma/patologia , Sequenciamento do Exoma
16.
Stem Cells Int ; 2020: 5045124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32148519

RESUMO

Mesenchymal stem/stromal cells (MSCs) exhibit multidifferentiation potential, paralleled with immunomodulatory and trophic properties that make them viable alternative tools for the treatment of degenerative disorders, allograft rejection, autoimmune diseases, and tissue regeneration. MSC functional attributes can be modulated by exposing them to inflammatory-stimulating microenvironments (i.e., priming) before their therapeutic use. Granulocyte-colony stimulating factor (G-CSF) is a cytokine that plays key roles in immune response and hematopoiesis modulation through direct effects on hematopoietic progenitors' proliferation, survival, and mobilization. Despite the established roles of MSCs supporting hematopoiesis, the effects of G-CSF on MSCs biology have not been thoroughly explored. This study reveals that G-CSF has also direct effects on adipose-derived MSCs (ADSCs), modulating their functions. Herein, microarray-based transcriptomic analysis shows that G-CSF stimulation in vitro results in modulation of various signaling pathways including ones related with the metabolism of hyaluronan (HA), conferring a profile of cell mobilization to ADSCs, mediated in a cell-intrinsic fashion in part by reducing CD44 expression and HA synthesis-related genes. Collectively, these data suggest a direct modulatory effect of G-CSF on ADSC function, potentially altering their therapeutic capacity and thus the design of future clinical protocols.

17.
Cancers (Basel) ; 12(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092966

RESUMO

The GTPase Rac1 is a well-established master regulator of cell motility and invasiveness contributing to cancer metastasis. Dysregulation of the Rac1 signaling pathway, resulting in elevated motile and invasive potential, has been reported in multiple cancers. However, there are limited studies on the regulation of Rac1 in prostate cancer. Here, we demonstrate that aggressive androgen-independent prostate cancer cells display marked hyperactivation of Rac1. This hyperactivation is independent of P-Rex1 activity or its direct activators, the PI3K product PIP3 and Gßγ subunits. Furthermore, we demonstrate that the motility and invasiveness of PC3 prostate cancer cells is independent of P-Rex1, supporting the analysis of publicly available datasets indicating no correlation between high P-Rex1 expression and cancer progression in patients. Rac1 hyperactivation was not related to the presence of activating Rac1 mutations and was insensitive to overexpression of a Rac-GAP or the silencing of specific Rac-GEFs expressed in prostate cancer cells. Interestingly, active Rac1 levels in these cells were markedly reduced by elevations in intracellular calcium or by serum stimulation, suggesting the presence of an alternative means of Rac1 regulation in prostate cancer that does not involve previously established paradigms.

18.
Front Oncol ; 9: 1323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828042

RESUMO

ZEB1 is a master regulator of the Epithelial-to-Mesenchymal Transition (EMT) program. While extensive evidence confirmed the importance of ZEB1 as an EMT transcription factor that promotes tumor invasiveness and metastasis, little is known about its regulation. In this work, we screened for potential regulatory links between ZEB1 and multiple cellular kinases. Exploratory in silico analysis aided by phospho-substrate antibodies and ZEB1 deletion mutants led us to identify several potential phospho-sites for the family of PKC kinases in the N-terminus of ZEB1. The analysis of breast cancer cell lines panels with different degrees of aggressiveness, together with the evaluation of a battery of kinase inhibitors, allowed us to expose a robust correlation between ZEB1 and PKCα both at mRNA and protein levels. Subsequent validation experiments using siRNAs against PKCα revealed that its knockdown leads to a concomitant decrease in ZEB1 levels, while ZEB1 knockdown had no impact on PKCα levels. Remarkably, PKCα-mediated downregulation of ZEB1 recapitulates the inhibition of mesenchymal phenotypes, including inhibition in cell migration and invasiveness. These findings were extended to an in vivo model, by demonstrating that the stable knockdown of PKCα using lentiviral shRNAs markedly impaired the metastatic potential of MDA-MB-231 breast cancer cells. Taken together, our findings unveil an unforeseen regulatory pathway comprising PKCα and ZEB1 that promotes the activation of the EMT in breast cancer cells.

19.
Medicina (B Aires) ; 79(Spec 6/1): 587-592, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31864231

RESUMO

The battle against cancer has advanced tremendously in the last thirty years and the survival rate has doubled. However, it is still difficult to achieve a generalized cure. The challenge is that cancer is not a unique disease; it is about dozens of different manifestations, even within the same tumor location. For systems biology, each solid tumor is a unique system characterized by its cellular heterogeneity, its interaction with the microenvironment in which it grows and develops, and its ability to adapt and modify it. Recent advances in understanding the molecular mechanisms that underlie cancer are transforming the diagnosis and treatment of the disease. In this sense, a growing set of treatments capable of attacking a specific tumor with higher efficiency has been developed, defining a new paradigm: the precision medicine in oncology. Genomics and bioinformatics are two fundamental pillars in this applied field. These technologies generate massive data (Big Data) that require analytical tools and trained personnel for the analysis, integration and transfer of the information to physicians. This presentation describes the concepts of personalized medicine, Big Data, the main advances in genomics and bioinformatics as well as their future perspectives and challenges.


La batalla contra el cáncer ha avanzado enormemente en los últimos treinta años y la tasa de supervivencia se ha duplicado, sin embargo aún es difícil alcanzar una cura generalizada. El desafío reside en que el cáncer no es una enfermedad única, se trata de decenas de manifestaciones diferentes incluso dentro de una misma localización tumoral. Para la biología de sistemas, cada tumor sólido es un sistema único caracterizado por su heterogeneidad celular, su interacción con el microambiente en el que crece y se desarrolla, y su capacidad de adaptarse y modificarlo. Los avances recientes en la comprensión de los mecanismos moleculares que subyacen al cáncer están transformando el diagnóstico y el tratamiento de la enfermedad. En este sentido, se ha desarrollado un conjunto creciente de tratamientos capaces de atacar con mayor eficiencia a un tumor específico dando paso a nuevo paradigma: el de la medicina de precisión. La genómica y la bioinformática son dos ejes fundamentales en el desarrollo y aplicación de la medicina personalizada. Estas tecnologías generan datos masivos (Big Data) que requieren de herramientas analíticas y personal capacitado para su análisis, integración y transferencia de la información hacia los médicos especialistas. En esta presentación se describen los principales avances en genómica y bioinformática aplicados a la medicina de precisión así como sus perspectivas futuras, desafíos y problemáticas.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Neoplasias/genética , Medicina de Precisão/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia
20.
Cell Death Dis ; 10(9): 680, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515469

RESUMO

ΔNp63α, a member of the p53 family of transcription factors, is overexpressed in a number of cancers and plays a role in proliferation, differentiation, migration, and invasion. ΔNp63α has been shown to regulate several microRNAs that are involved in development and cancer. We identified miRNA miR-320a as a positively regulated target of ΔNp63α. Previous studies have shown that miR-320a is downregulated in colorectal cancer and targets the small GTPase Rac1, leading to a reduction in noncanonical WNT signaling and EMT, thereby inhibiting tumor metastasis and invasion. We showed that miR-320a is a direct target of ΔNp63α. Knockdown of ΔNp63α in HaCaT and A431 cells downregulates miR-320a levels and leads to a corresponding elevation in PKCγ transcript and protein levels. Rac1 phosphorylation at Ser71 was increased in the absence of ΔNp63α, whereas overexpression of ΔNp63α reversed S71 phosphorylation of Rac1. Moreover, increased PKCγ levels, Rac1 phosphorylation and cell invasion observed upon knockdown of ΔNp63α was reversed by either overexpressing miR-320a mimic or Rac1 silencing. Finally, silencing PKCγ or treatment with the PKC inhibitor Gö6976 reversed increased Rac1 phosphorylation and cell invasion observed upon silencing ΔNp63α. Taken together, our data suggest that ΔNp63α positively regulates miR-320a, thereby inhibiting PKCγ expression, Rac1 phosphorylation, and cancer invasion.


Assuntos
MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Proteína Quinase C-delta/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Western Blotting , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , MicroRNAs/genética , Invasividade Neoplásica/patologia , Fosforilação/genética , Fosforilação/fisiologia , Proteína Quinase C-delta/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética , Proteínas rac1 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...