Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 176104, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39250966

RESUMO

Numerous harmful contaminants (i.e. salt and heavy metals) have become major threats to soil and are being introduced into the soil through human and geological activities. These contaminants are raising global concerns about their toxic effects on food safety, human health and reclamation mechanisms. Microbial-inoculated biochar can improve soil environment by immobilizing and transforming contaminants in soil and altering the physico-chemical and biochemical properties of soil. In this review we will discuss the positive effects of microbial-modified biochar on physicochemical properties of contaminated soil. It can decrease the pH, EC while increase CEC, OM and other biochemical properties of soil. Additionally, we discuss the efficacy of biochar as a microbial carrier for salt and heavy metals-contaminated soil and plant growth in those soils. This review provides a better understanding of the potential of microbial biochar can be used for bioremediation of contaminated soil, which will help the researcher to modify biochar in a targeted way for specific applications.

2.
J Environ Manage ; 355: 120448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422850

RESUMO

Salinity stress poses a significant challenge to agriculture, impacting soil health, plant growth and contributing to greenhouse gas (GHG) emissions. In response to these intertwined challenges, the use of biochar and its nanoscale counterpart, nano-biochar, has gained increasing attention. This comprehensive review explores the heterogeneous role of biochar and nano-biochar in enhancing salt resilience in plants and soil while concurrently mitigating GHG emissions. The review discusses the effects of these amendments on soil physicochemical properties, improved water and nutrient uptake, reduced oxidative damage, enhanced growth and the alternation of soil microbial communities, enhance soil fertility and resilience. Furthermore, it examines their impact on plant growth, ion homeostasis, osmotic adjustment and plant stress tolerance, promoting plant development under salinity stress conditions. Emphasis is placed on the potential of biochar and nano-biochar to influence soil microbial activities, leading to altered emissions of GHG emissions, particularly nitrous oxide(N2O) and methane(CH4), contributing to climate change mitigation. The comprehensive synthesis of current research findings in this review provides insights into the multifunctional applications of biochar and nano-biochar, highlighting their potential to address salinity stress in agriculture and their role in sustainable soil and environmental management. Moreover, it identifies areas for further investigation, aiming to enhance our understanding of the intricate interplay between biochar, nano-biochar, soil, plants, and greenhouse gas emissions.


Assuntos
Gases de Efeito Estufa , Resiliência Psicológica , Gases de Efeito Estufa/análise , Solo/química , Carvão Vegetal/química , Agricultura , Cloreto de Sódio , Metano/análise , Óxido Nitroso/análise , Dióxido de Carbono/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA