Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896691

RESUMO

Indoor localization is a key research area and has been stated as a major goal for Sixth Generation (6G) communications. Indoor localization faces many challenges, such as harsh wireless propagation channels, cluttered and dynamic environments, non-line-of-sight conditions, etc. There are various technologies that can be applied to address these issues. In this paper, four major technologies for implementing an indoor localization system are reviewed: Wireless Fidelity (Wi-Fi), Ultra-Wide Bandwidth Radio (UWB), Bluetooth Low Energy (BLE), and Inertial Measurement Units (IMU). Sections on Data Fusion (DF) and Machine Learning (ML) have been included as well due to their key role in Indoor Positioning Systems (IPS). These technologies have been categorized based on the techniques that they employ and the associated errors in localization. A brief comparison between these technologies is made based on specific performance metrics. Finally, the limitations of these techniques are identified to aid future research.

2.
Sensors (Basel) ; 22(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408051

RESUMO

The existing sub-6 GHz band is insufficient to support the bandwidth requirement of emerging data-rate-hungry applications and Internet of Things devices, requiring ultrareliable low latency communication (URLLC), thus making the migration to millimeter-wave (mmWave) bands inevitable. A notable disadvantage of a mmWave band is the significant losses suffered at higher frequencies that may not be overcome by novel optimization algorithms at the transmitter and receiver and thus result in a performance degradation. To address this, Intelligent Reflecting Surface (IRS) is a new technology capable of transforming the wireless channel from a highly probabilistic to a highly deterministic channel and as a result, overcome the significant losses experienced in the mmWave band. This paper aims to survey the design and applications of an IRS, a 2-dimensional (2D) passive metasurface with the ability to control the wireless propagation channel and thus achieve better spectral efficiency (SE) and energy efficiency (EE) to aid the fifth and beyond generation to deliver the required data rate to support current and emerging technologies. It is imperative that the future wireless technology evolves toward an intelligent software paradigm, and the IRS is expected to be a key enabler in achieving this task. This work provides a detailed survey of the IRS technology, limitations in the current research, and the related research opportunities and possible solutions.

3.
Sensors (Basel) ; 21(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066695

RESUMO

In this paper, an analytical framework is presented for device detection in an impulse radio (IR) ultra-wide bandwidth (UWB) system and its performance analysis is carried out. The Neyman-Pearson (NP) criteria is employed for this device-free detection. Different from the frequency-based approaches, the proposed detection method utilizes time domain concepts. The characteristic function (CF) is utilized to measure the moments of the presence and absence of the device. Furthermore, this method is easily extendable to existing device-free and device-based techniques. This method can also be applied to different pulse-based UWB systems which use different modulation schemes compared to IR-UWB. In addition, the proposed method does not require training to measure or calibrate the system operating parameters. From the simulation results, it is observed that an optimal threshold can be chosen to improve the ROC for UWB system. It is shown that the probability of false alarm, PFA, has an inverse relationship with the detection threshold and frame length. Particularly, to maintain PFA<10-5 for a frame length of 300 ns, it is required that the threshold should be greater than 2.2. It is also shown that for a fix PFA, the probability of detection PD increases with an increase in interference-to-noise ratio (INR). Furthermore, PD approaches 1 for INR >-2 dB even for a very low PFA i.e., PFA=1×10-7. It is also shown that a 2 times increase in the interference energy results in a 3 dB improvement in INR for a fixed PFA=0.1 and PD=0.5. Finally, the derived performance expressions are corroborated through simulation.

4.
Sensors (Basel) ; 20(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957686

RESUMO

Hybrid pre-coding strategies are considered as a potential solution for combating path loss experienced by Massive MIMO systems operating at millimeter wave frequencies. The partially connected structure is preferred over the fully connected structure due to smaller computational complexity. In order to improve the spectral efficiency of a partially connected hybrid pre-coding architecture, which is one of the requirements of future 5G/B5G systems, this work proposes the application of evolutionary algorithms for joint computation of RF and the digital pre-coder. The evolutionary algorithm based scheme jointly evaluates the RF and digital pre-coder for a partially connected hybrid structure by taking into account the current RF chain for computations and therefore it is not based on interference cancellation from all other RF chains as in the case of successive interference cancellation (SIC). The evolutionary algorithm, i.e., Artificial Bee Colony (BEE) based pre-coding scheme outperforms other popular evolutionary algorithms as well as the SIC based pre-coding scheme in terms of spectral efficiency. In addition, the proposed algorithm is not overly sensitive to variations in channel conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA