Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36671645

RESUMO

The bioconvective flow of non-Newtonian fluid induced by a stretched surface under the aspects of combined magnetic and porous medium effects is the main focus of the current investigation. Unlike traditional aspects, here the viscoelastic behavior has been examined by a combination of both micropolar and second grade fluid. Further thermophoresis, Brownian motion and thermodiffusion aspects, along with variable thermal conductivity, have also been utilized for the boundary process. The solution of the nonlinear fundamental flow problem is figured out via convergent approach via Mathematica software. It is noted that this flow model is based on theoretical flow assumptions instead of any experimental data. The efficiency of the simulated solution has been determined by comparing with previously reported results. The engineering parameters' effects are computationally evaluated for some definite range.

2.
J Appl Biomater Funct Mater ; 20: 22808000221125870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36373397

RESUMO

The nanoparticles are frequently used in biomedical science for the treatment of diseases like cancer and these nanoparticles are injected in blood which is transported in the cardiovascular system on the principle of peristalsis. This study elaborates the effects of Lorentz force and joule heating on the peristaltic flow of copper and iron oxide suspended blood based nanofluid in a complex wavy non-uniform curved channel. The Brinkman model is utilized for the temperature dependent viscosity and thermal conductivity. The problem is formulated using the fundamental laws in terms of coupled partial differential equations which are simplified using the creeping flow phenomenon. The graphical results for velocity, temperature, streamlines, and axial pressure are simulated numerically. The concluded observations deduce that the solid volume fraction of nanoparticles reduces the velocity and enhance the pressure gradient and accumulation of trapping bolus in the upper half of the curved channel is noticed for temperature dependent viscosity.


Assuntos
Cobre , Nanopartículas , Peristaltismo , Viscosidade , Nanopartículas Magnéticas de Óxido de Ferro
3.
Micromachines (Basel) ; 13(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36296103

RESUMO

In this investigation, the compressibility effects are visualized on the flow of non-Newtonian fluid, which obeys the stress-strain relationship of an upper convected Maxwell model in a microchannel. The fundamental laws of momentum and mass conservation are used to formulate the problem. The governing nonlinear partial differential equations are reduced to a set of ordinary differential equations and solved with the help of the regular perturbation method assuming the amplitude ratio (wave amplitude/half width of channel) as a flow parameter. The axial component of velocity and flow rate is computed through numerical integration. Graphical results for the mean velocity perturbation function, net flow and axial velocity have been presented and discussed. It is concluded that the net flow rate and Dwall increase in case of the linear Maxwell model, while they decrease in case of the convected Maxwell model. The compressibility parameter shows the opposite results for linear and upper convected Maxwell fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...