Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 6(2)2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28174168

RESUMO

BACKGROUND: Cardiomyocyte-specific transgenic mice overexpressing S100A6, a member of the family of EF-hand calcium-binding proteins, develop less cardiac hypertrophy, interstitial fibrosis, and myocyte apoptosis after permanent coronary ligation, findings that support S100A6 as a potential therapeutic target after acute myocardial infarction. Our purpose was to investigate S100A6 gene therapy for acute myocardial ischemia-reperfusion. METHODS AND RESULTS: We first performed in vitro studies to examine the effects of S100A6 overexpression and knockdown in rat neonatal cardiomyocytes. S100A6 overexpression improved calcium transients and protected against apoptosis induced by hypoxia-reoxygenation via enhanced calcineurin activity, whereas knockdown of S100A6 had detrimental effects. For in vivo studies, human S100A6 plasmid or empty plasmid was delivered to the left ventricular myocardium by ultrasound-targeted microbubble destruction in Fischer-344 rats 2 days prior to a 30-minute ligation of the left anterior descending coronary artery followed by reperfusion. Control animals received no therapy. Pretreatment with S100A6 gene therapy yielded a survival advantage compared to empty-plasmid and nontreated controls. S100A6-pretreated animals had reduced infarct size and improved left ventricular systolic function, with less myocyte apoptosis, attenuated cardiac hypertrophy, and less cardiac fibrosis. CONCLUSIONS: S100A6 overexpression by ultrasound-targeted microbubble destruction helps ameliorate myocardial ischemia-reperfusion, resulting in lower mortality and improved left ventricular systolic function post-ischemia-reperfusion via attenuation of apoptosis, reduction in cardiac hypertrophy, and reduced infarct size. Our results indicate that S100A6 is a potential therapeutic target for acute myocardial infarction.


Assuntos
Apoptose , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/complicações , Miócitos Cardíacos/metabolismo , RNA/genética , Proteína A6 Ligante de Cálcio S100/genética , Animais , Animais Recém-Nascidos , Western Blotting , Proteínas de Ciclo Celular/biossíntese , Modelos Animais de Doenças , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real , Proteína A6 Ligante de Cálcio S100/biossíntese , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 113(44): 12592-12597, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27742792

RESUMO

Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatia Dilatada/genética , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , Fosfoproteínas/genética , Fosforilação , Proteoma/genética
3.
Nat Commun ; 6: 8391, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26403541

RESUMO

Membrane proteins are crucial to heart function and development. Here we combine cationic silica-bead coating with shotgun proteomics to enrich for and identify plasma membrane-associated proteins from primary mouse neonatal and human fetal ventricular cardiomyocytes. We identify Tmem65 as a cardiac-enriched, intercalated disc protein that increases during development in both mouse and human hearts. Functional analysis of Tmem65 both in vitro using lentiviral shRNA-mediated knockdown in mouse cardiomyocytes and in vivo using morpholino-based knockdown in zebrafish show marked alterations in gap junction function and cardiac morphology. Molecular analyses suggest that Tmem65 interaction with connexin 43 (Cx43) is required for correct localization of Cx43 to the intercalated disc, since Tmem65 deletion results in marked internalization of Cx43, a shorter half-life through increased degradation, and loss of Cx43 function. Our data demonstrate that the membrane protein Tmem65 is an intercalated disc protein that interacts with and functionally regulates ventricular Cx43.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Sistema de Condução Cardíaco/metabolismo , Ventrículos do Coração/metabolismo , Proteínas de Membrana/genética , Miócitos Cardíacos/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Imunofluorescência , Junções Comunicantes/ultraestrutura , Técnicas de Silenciamento de Genes , Sistema de Condução Cardíaco/fisiologia , Técnicas In Vitro , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/ultraestrutura , Proteômica , Dióxido de Silício , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
4.
J Am Heart Assoc ; 3(5): e001018, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25332179

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) resident protein 44 (ERp44) is a member of the protein disulfide isomerase family, is induced during ER stress, and may be involved in regulating Ca(2+) homeostasis. However, the role of ERp44 in cardiac development and function is unknown. The aim of this study was to investigate the role of ERp44 in cardiac development and function in mice, zebrafish, and embryonic stem cell (ESC)-derived cardiomyocytes to determine the underlying role of ERp44. METHODS AND RESULTS: We generated and characterized ERp44(-/-) mice, ERp44 morphant zebrafish embryos, and ERp44(-/-) ESC-derived cardiomyocytes. Deletion of ERp44 in mouse and zebrafish caused significant embryonic lethality, abnormal heart development, altered Ca(2+) dynamics, reactive oxygen species generation, activated ER stress gene profiles, and apoptotic cell death. We also determined the cardiac phenotype in pressure overloaded, aortic-banded ERp44(+/-) mice: enhanced ER stress activation and increased mortality, as well as diastolic cardiac dysfunction with a significantly lower fractional shortening. Confocal and LacZ histochemical staining showed a significant transmural gradient for ERp44 in the adult heart, in which high expression of ERp44 was observed in the outer subepicardial region of the myocardium. CONCLUSIONS: ERp44 plays a critical role in embryonic heart development and is crucial in regulating cardiac cell Ca(2+) signaling, ER stress, ROS-induced oxidative stress, and activation of the intrinsic mitochondrial apoptosis pathway.


Assuntos
Células-Tronco Embrionárias/metabolismo , Retículo Endoplasmático/metabolismo , Cardiopatias Congênitas/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Apoptose , Sinalização do Cálcio , Células Cultivadas , Células-Tronco Embrionárias/patologia , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/fisiopatologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Chaperonas Moleculares/genética , Morfogênese , Contração Miocárdica , Miócitos Cardíacos/patologia , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
5.
J Cell Physiol ; 229(3): 374-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24037923

RESUMO

Calnexin (CNX) is an endoplasmic reticulum (ER) quality control chaperone that has been implicated in ER stress. ER stress is a prominent pathological feature of various pathologic conditions, including cardiovascular diseases. However, the role of CNX and ER stress has not been studied in the heart. In the present study, we aimed to characterize the role of CNX in cardiomyocyte physiology with respect to ER stress, apoptosis, and cardiomyocyte Ca(2+) cycling. We demonstrated significantly decreased CNX mRNA and protein levels by LentiVector mediated transduction of targeting shRNAs. CNX silenced cardiomyocytes exhibited ER stress as evidenced by increased GRP78 and ATF6 protein levels, increased levels of spliced XBP1 mRNA, ASK-1, ERO1a, and CHOP mRNA levels. CNX silencing also led to significant activation of caspases-3 and -9. This activation of caspases was associated with hallmark morphological features of apoptosis including loss of sarcomeric organization and nuclear integrity. Ca(2+) imaging in live cells showed that CNX silencing resulted in Ca(2+) transients with significantly larger amplitudes but decreased frequency and Ca(2+) uptake rates in the basal state. Interestingly, 5 mM caffeine stimulated Ca(2+) transients were similar between control and CNX silenced cardiomyocytes. Finally, we demonstrated that CNX silencing induced the expression of the L-type voltage dependent calcium channel (CAV1.2) but reduced the expression of the sarcoplasmic reticulum ATPase (SERCA2a). In conclusion, this is the first study to demonstrate CNX has a specific role in cardiomyocyte viability and Ca(2+) cycling through its effects on ER stress, apoptosis and Ca(2+) channel expression.


Assuntos
Apoptose , Sinalização do Cálcio , Calnexina/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Interferência de RNA , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Cafeína/farmacologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Calnexina/genética , Caspase 3/metabolismo , Caspase 9/metabolismo , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Vetores Genéticos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Lentivirus/genética , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Oxirredutases , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética , Transfecção , Proteína 1 de Ligação a X-Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...