Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
2.
Natl Sci Rev ; 11(4): nwae041, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38666094

RESUMO

Recently, Tie Jun Cui and team members introduced innovative macroscopic and statistical models for digital coding metasurfaces, bridging the digital and electromagnetic realms and quantifying information loss for enhanced wireless communication system design. This is a highlight of it.

3.
Sci Rep ; 14(1): 4350, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388740

RESUMO

Our research focuses on examining the problem of localizing user equipment (UE) in the uplink scenario using reconfigurable intelligent surfaces (RIS) based lens. We carry out a thorough analysis of the Fisher information matrix (FIM) and assess the influence of various RIS-based lens configurations using an actual RIS phase-dependent amplitude variations model. Furthermore, to reduce the complexity of the maximum likelihood (ML) estimator, a simple localization algorithm-based angular expansion is presented. Simulation results show superior localization performance when prior location information is available for directional and positional channel configurations. The position error bound (PEB) and the root mean square error (RMSE) are studied to evaluate the localization accuracy of the user utilizing the realistic RIS phase-dependent amplitude model in the near-field region. Furthermore, the achievable data rate is obtained in the same region using the realistic RIS phase-dependent amplitude model. It is noticed that adopting the actual RIS phase-dependent amplitude model under the near-field channel increases the localization error and degrades the data rate performance for amplitude value less than one so, the unity assumption of the RIS phase shift model used widely in the literature is inaccurate.

4.
IEEE Trans Biomed Eng ; PP2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335072

RESUMO

Terahertz (THz) metasurfaces based on high Q-factor electromagnetically induced transparency-like (EIT-like) resonances are promising for biological sensing. Despite this potential, they have not often been investigated for practical differentiation between cancerous and healthy cells. The present methodology relies mainly on refractive index sensing, while factors of transmission magnitude and Q-factor offer significant information about the tumors. To address this limitation and improve sensitivity, we fabricated a THz EIT-like metasurface based on asymmetric resonators on an ultra-thin and flexible dielectric substrate. Bright-dark modes coupling at 1.96 THz was experimentally verified, and numerical results and theoretical analysis were presented. An enhanced theoretical sensitivity of 550 GHz/RIU was achieved for a sample with a thickness of 13µm due to the ultra-thin substrate and novel design. A two-layer skin model was generated whereby keratinocyte cell lines were cultured on a base of collagen. When NEB1-shPTCH (basal cell carcinoma (BCC)) were switched out for NEB1-shCON cell lines (healthy) and when BCC's density was raised from 1×105 to 2.5×105, a frequency shift of 40 and 20 GHz were observed, respectively. A combined sensing analysis characterizes different cell lines. The findings may open new opportunities for early cancer detection with a fast, less-complicated, and inexpensive method.

5.
Sci Data ; 10(1): 895, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092796

RESUMO

Small-scale motion detection using non-invasive remote sensing techniques has recently garnered significant interest in the field of speech recognition. Our dataset paper aims to facilitate the enhancement and restoration of speech information from diverse data sources for speakers. In this paper, we introduce a novel multimodal dataset based on Radio Frequency, visual, text, audio, laser and lip landmark information, also called RVTALL. Specifically, the dataset consists of 7.5 GHz Channel Impulse Response (CIR) data from ultra-wideband (UWB) radars, 77 GHz frequency modulated continuous wave (FMCW) data from millimeter wave (mmWave) radar, visual and audio information, lip landmarks and laser data, offering a unique multimodal approach to speech recognition research. Meanwhile, a depth camera is adopted to record the landmarks of the subject's lip and voice. Approximately 400 minutes of annotated speech profiles are provided, which are collected from 20 participants speaking 5 vowels, 15 words, and 16 sentences. The dataset has been validated and has potential for the investigation of lip reading and multimodal speech recognition.

6.
Math Biosci Eng ; 20(9): 17018-17036, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37920045

RESUMO

Sleep plays an important role in neonatal brain and physical development, making its detection and characterization important for assessing early-stage development. In this study, we propose an automatic and computationally efficient algorithm to detect neonatal quiet sleep (QS) using a convolutional neural network (CNN). Our study used 38-hours of electroencephalography (EEG) recordings, collected from 19 neonates at Fudan Children's Hospital in Shanghai, China (Approval No. (2020) 22). To train and test the CNN, we extracted 12 prominent time and frequency domain features from 9 bipolar EEG channels. The CNN architecture comprised two convolutional layers with pooling and rectified linear unit (ReLU) activation. Additionally, a smoothing filter was applied to hold the sleep stage for 3 minutes. Through performance testing, our proposed method achieved impressive results, with 94.07% accuracy, 89.70% sensitivity, 94.40% specificity, 79.82% F1-score and a 0.74 kappa coefficient when compared to human expert annotations. A notable advantage of our approach is its computational efficiency, with the entire training and testing process requiring only 7.97 seconds. The proposed algorithm has been validated using leave one subject out (LOSO) validation, which demonstrates its consistent performance across a diverse range of neonates. Our findings highlight the potential of our algorithm for real-time neonatal sleep stage classification, offering a fast and cost-effective solution. This research opens avenues for further investigations in early-stage development monitoring and the assessment of neonatal health.


Assuntos
Redes Neurais de Computação , Sono , Recém-Nascido , Criança , Humanos , China , Fases do Sono/fisiologia , Algoritmos , Eletroencefalografia
8.
Sci Rep ; 13(1): 18209, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875538

RESUMO

In this paper, a single-layer reconfigurable reflective metasurface is presented. The proposed metasurface operates at 5.4 GHz and can achieve either absorption or cross-polarization conversion corresponding at two different diode biasing states. The reflective metasurface acts as an absorber for an incident wave when the diodes are forward-biased. Similarly, it changes the polarization state of the reflected wave for a linearly polarized incident wave when the diodes are reverse-biased. The proposed structure maintains the aforementioned performance characteristics for oblique incidence, up to 60° compared to the perpendicular incidence. The proposed metasurface can achieve linear to linear polarization conversion with polarization conversion ratio (PCR) > 95% and absorption, with absorption ratio (AR) > 80% in the same frequency band just by reconfiguring the state of the PIN diodes.

9.
Sci Rep ; 13(1): 16132, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752140

RESUMO

In this letter, a compact, planar circularly polarized (CP) sub-GHz slot-based multiple-input-multiple-output (MIMO) antenna with dual sense CP along with polarization bandwidth reconfigurability is presented. The pentagonal reactively loaded slot is fed by two folded tapered feedlines to achieve CP. The antenna offers left-hand-circular polarization (RHCP) with the as well as right hand circular polarization (LHCP). The antenna exhibit linearly polarization (LP) by exciting two ports simultaneously. Moreover, the antenna CP resonance can be reconfigured by varying the capacitance of the varactor diode. The antenna has a wide -10 dB operating frequency band from 578-929 MHz. while the axial ratio (AR) bandwidth ranges from 490-810 MHz. Moreover, the two elements MIMO are optimized and placed on compact dimensions 100 × 100 × 0.76 mm3 to realize pattern diversity. The antenna's key characteristics are compact size, wide-band sub-GHz operation, dual sense CP, polarization bandwidth reconfigurability and good MIMO performance. Thus, it is a suitable candidate to be utilized in CubeSats applications in sub-GHz bands.

10.
Sci Rep ; 13(1): 14017, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640780

RESUMO

This paper proposes a nature-inspired spider web-shaped ultra-high frequency (UHF) radio frequency identification (RFID) reader antenna and battery-free sensor-based system for healthcare applications. This antenna design consists of eight concentric decagons of various sizes and five straight microstrip lines.These lines are connected to the ground using 50 [Formula: see text] resistors from both ends, except for one microstrip line that is reserved for connecting a feeding port. The reader antenna design features fairly strong and uniform electric and magnetic field characteristics. It also exhibits wideband characteristics, covering whole UHF RFID band (860-960 MHz) and providing a tag reading volume of 200 [Formula: see text] 200 [Formula: see text] 20 mm[Formula: see text]. Additionally, it has low gain characteristics, which are necessary for the majority of nearfield applications to prevent the misreading of other tags. Moreover, the current distribution in this design is symmetric throughout the structure, effectively resolving orientation sensitivity issues commonly encountered in low-cost linearly polarized tag antennas. The measurement results show that the reader antenna can read medicine pills tagged using low-cost passive/battery-free RFID tags, tagged expensive jewelry, intervenes solution, and blood bags positioned in various orientations. As a result, the proposed reader antenna-based system is a strong contender for near-field RFID, healthcare, and IoT applications.


Assuntos
Dispositivo de Identificação por Radiofrequência , Aranhas , Animais , Fontes de Energia Elétrica , Eletricidade , Instalações de Saúde
11.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420775

RESUMO

A wideband low-profile radiating G-shaped strip on a flexible substrate is proposed to operate as biomedical antenna for off-body communication. The antenna is designed to produce circular polarization over the frequency range 5-6 GHz to communicate with WiMAX/WLAN antennas. Furthermore, it is designed to produce linear polarization over the frequency range 6-19 GHz for communication with the on-body biosensor antennas. It is shown that an inverted G-shaped strip produces circular polarization (CP) of the opposite sense to that produced by G-shaped strip over the frequency range 5-6 GHz. The antenna design is explained and its performance is investigated through simulation, as well as experimental measurements. This antenna can be viewed as composed of a semicircular strip terminated with a horizontal extension at its lower end and terminated with a small circular patch through a corner-shaped strip extension at its upper end to form the shape of "G" or inverted "G". The purpose of the corner-shaped extension and the circular patch termination is to match the antenna impedance to 50 Ω over the entire frequency band (5-19 GHz) and to improve the circular polarization over the frequency band (5-6 GHz). To be fabricated on only one face of the flexible dielectric substrate, the antenna is fed through a co-planar waveguide (CPW). The antenna and the CPW dimensions are optimized to obtain the most optimal performance regarding the impedance matching bandwidth, 3dB Axial Ratio (AR) bandwidth, radiation efficiency, and maximum gain. The results show that the achieved 3dB-AR bandwidth is 18% (5-6 GHz). Thus, the proposed antenna covers the 5 GHz frequency band of the WiMAX/WLAN applications within its 3dB-AR frequency band. Furthermore, the impedance matching bandwidth is 117% (5-19 GHz) which enables low-power communication with the on-body sensors over this wide range of the frequency. The maximum gain and radiation efficiency are 5.37 dBi and 98%, respectively. The overall antenna dimensions are 25 × 27 × 0.13 mm3 and the bandwidth-dimension ratio (BDR) is 1733.


Assuntos
Comunicação , Tecnologia sem Fio , Desenho de Equipamento , Impedância Elétrica
12.
Sci Rep ; 13(1): 11869, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481647

RESUMO

It is proven that the scattering, reflection, and refraction properties of electromagnetic signals can be adapted and managed by using reconfigurable intelligent surfaces (RISs). In this paper, we have investigated the performance of a single-input-single-output (SISO) wideband system in terms of achievable data rate by optimizing the phases of RIS elements and performing a fair power allocation for each subcarrier over the entire bandwidth. A new beamforming codebook is developed from which the maximizing signal-to-noise (SNR) configuration is selected. The channel state information (CSI) along with the selected maximizing SNR configuration is then used by the proposed power algorithm to obtain the optimal configuration of the RIS. To validate our proposed method, it is compared with state-of-the-art semidefinite relaxation (SDR) scheme in terms of performance, complexity and run-time consumption. Our method shows dramatically lower computational complexity than the SDR method and achieves an order of 2.5 increase in the achievable data rate with an optimized RIS compared with an un-configured surface.

13.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448069

RESUMO

Smart respiratory therapy is enabled by continual assessment of lung functions. This systematic review provides an overview of the suitability of equipment-to-patient acoustic imaging in continual assessment of lung conditions. The literature search was conducted using Scopus, PubMed, ScienceDirect, Web of Science, SciELO Preprints, and Google Scholar. Fifteen studies remained for additional examination after the screening process. Two imaging modalities, lung ultrasound (LUS) and vibration imaging response (VRI), were identified. The most common outcome obtained from eleven studies was positive observations of changes to the geographical lung area, sound energy, or both, while positive observation of lung consolidation was reported in the remaining four studies. Two different modalities of lung assessment were used in eight studies, with one study comparing VRI against chest X-ray, one study comparing VRI with LUS, two studies comparing LUS to chest X-ray, and four studies comparing LUS in contrast to computed tomography. Our findings indicate that the acoustic imaging approach could assess and provide regional information on lung function. No technology has been shown to be better than another for measuring obstructed airways; hence, more research is required on acoustic imaging in detecting obstructed airways regionally in the application of enabling smart therapy.


Assuntos
Pneumopatias , Pulmão , Humanos , Pulmão/diagnóstico por imagem , Ultrassonografia , Tomografia Computadorizada por Raios X , Acústica
14.
Sci Rep ; 13(1): 9900, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336998

RESUMO

A miniaturized folded dipole patch antenna (FDPA) design for biomedical applications operating at sub 1 GHz (434 MHz) band is presented. Antenna is fabricated on FR-4 substrate material having dimensions of 16.40 mm [Formula: see text] 8.60 mm [Formula: see text] 1.52 mm (0.023[Formula: see text] [Formula: see text] 0.012[Formula: see text] [Formula: see text] 0.002[Formula: see text]). Indirect feed coupling is applied through two parallel strips at bottom layer of the substrate. The antenna size is reduced by 83% through lumped inductor placed at the center path of the radiating FDPA, suitable for biomedical (implantable) applications and hyperthermia. Moreover, Impedance matching is achieved without using any Balun transformer or any other complex matching network. The proposed antenna provides an impedance bandwidth of 6 MHz (431-437 MHz) below - 10 dB and a gain of - 31 dB at 434 MHz. The designed antenna is also placed on a human body model to evaluate its performance for hyperthermia through Specific Absorption Rate (SAR), Effective Field Size (EFS), and penetration depth (PD).


Assuntos
Fontes de Energia Elétrica , Febre , Humanos , Impedância Elétrica , Hipertermia
15.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112445

RESUMO

Wireless communication has become an integral part of modern vehicles. However, securing the information exchanged between interconnected terminals poses a significant challenge. Effective security solutions should be computationally inexpensive, ultra-reliable, and capable of operating in any wireless propagation environment. Physical layer secret key generation has emerged as a promising technique, which leverages the inherent randomness of wireless-channel responses in amplitude and phase to generate high-entropy symmetric shared keys. The sensitivity of the channel-phase responses to the distance between network terminals makes this technique a viable solution for secure vehicular communication, given the dynamic behavior of these terminals. However, the practical implementation of this technique in vehicular communication is hindered by fluctuations in the communication link between line-of-sight (LoS) and non-line-of-sight (NLoS) conditions. This study introduces a key-generation approach that uses a reconfigurable intelligent surface (RIS) to secure message exchange in vehicular communication. The RIS improves the performance of key extraction in scenarios with low signal-to-noise ratios (SNRs) and NLoS conditions. Additionally, it enhances the network's security against denial-of-service (DoS) attacks. In this context, we propose an efficient RIS configuration optimization technique that reinforces the signals received from legitimate users and weakens the signals from potential adversaries. The effectiveness of the proposed scheme is evaluated through practical implementation using a 1-bit RIS with 64×64 elements and software-defined radios operating within the 5G frequency band. The results demonstrate improved key-extraction performance and increased resistance to DoS attacks. The hardware implementation of the proposed approach further validated its effectiveness in enhancing key-extraction performance in terms of the key generation and mismatch rates, while reducing the effect of the DoS attacks on the network.

16.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112452

RESUMO

This paper presents a trainable hybrid approach involving a shallow autoencoder (AE) and a conventional classifier for epileptic seizure detection. The signal segments of a channel of electroencephalogram (EEG) (EEG epochs) are classified as epileptic and non-epileptic by employing its encoded AE representation as a feature vector. Analysis on a single channel-basis and the low computational complexity of the algorithm allow its use in body sensor networks and wearable devices using one or few EEG channels for wearing comfort. This enables the extended diagnosis and monitoring of epileptic patients at home. The encoded representation of EEG signal segments is obtained based on training the shallow AE to minimize the signal reconstruction error. Extensive experimentation with classifiers has led us to propose two versions of our hybrid method: (a) one yielding the best classification performance compared to the reported methods using the k-nearest neighbor (kNN) classifier and (b) the second with a hardware-friendly architecture and yet with the best classification performance compared to other reported methods in this category using a support-vector machine (SVM) classifier. The algorithm is evaluated on the Children's Hospital Boston, Massachusetts Institute of Technology (CHB-MIT), and University of Bonn EEG datasets. The proposed method achieves 98.85% accuracy, 99.29% sensitivity, and 98.86% specificity on the CHB-MIT dataset using the kNN classifier. The best figures using the SVM classifier for accuracy, sensitivity, and specificity are 99.19%, 96.10%, and 99.19%, respectively. Our experiments establish the superiority of using an AE approach with a shallow architecture to generate a low-dimensionality yet effective EEG signal representation capable of high-performance abnormal seizure activity detection at a single-channel EEG level and with a fine granularity of 1 s EEG epochs.


Assuntos
Epilepsia , Processamento de Sinais Assistido por Computador , Criança , Humanos , Epilepsia/diagnóstico , Convulsões/diagnóstico , Eletroencefalografia/métodos , Máquina de Vetores de Suporte , Algoritmos
17.
Sci Rep ; 13(1): 3473, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859571

RESUMO

Radar systems are increasingly being employed in healthcare applications for human activity recognition due to their advantages in terms of privacy, contactless sensing, and insensitivity to lighting conditions. The proposed classification algorithms are however often complex, focusing on a single domain of radar, and requiring significant computational resources that prevent their deployment in embedded platforms which often have limited memory and computational resources. To address this issue, we present an adaptive magnitude thresholding approach for highlighting the region of interest in the multi-domain micro-Doppler signatures. The region of interest is beneficial to extract salient features, meanwhile it ensures the simplicity of calculations with less computational cost. The results for the proposed approach show an accuracy of up to 93.1% for six activities, outperforming state-of-the-art deep learning methods on the same dataset with an over tenfold reduction in both training time and memory footprint, and a twofold reduction in inference time compared to a series of deep learning implementations. These results can help bridge the gap toward embedded platform deployment.


Assuntos
Algoritmos , Radar , Humanos , Instalações de Saúde , Atividades Humanas , Iluminação
18.
Sensors (Basel) ; 23(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36772291

RESUMO

Breathing monitoring is an efficient way of human health sensing and predicting numerous diseases. Various contact and non-contact-based methods are discussed in the literature for breathing monitoring. Radio frequency (RF)-based breathing monitoring has recently gained enormous popularity among non-contact methods. This method eliminates privacy concerns and the need for users to carry a device. In addition, such methods can reduce stress on healthcare facilities by providing intelligent digital health technologies. These intelligent digital technologies utilize a machine learning (ML)-based system for classifying breathing abnormalities. Despite advances in ML-based systems, the increasing dimensionality of data poses a significant challenge, as unrelated features can significantly impact the developed system's performance. Optimal feature scoring may appear to be a viable solution to this problem, as it has the potential to improve system performance significantly. Initially, in this study, software-defined radio (SDR) and RF sensing techniques were used to develop a breathing monitoring system. Minute variations in wireless channel state information (CSI) due to breathing movement were used to detect breathing abnormalities in breathing patterns. Furthermore, ML algorithms intelligently classified breathing abnormalities in single and multiple-person scenarios. The results were validated by referencing a wearable sensor. Finally, optimal feature scoring was used to improve the developed system's performance in terms of accuracy, training time, and prediction speed. The results showed that optimal feature scoring can help achieve maximum accuracy of up to 93.8% and 91.7% for single-person and multi-person scenarios, respectively.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Monitorização Fisiológica , Respiração , Ondas de Rádio
19.
Sci Rep ; 13(1): 749, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639724

RESUMO

Early diagnosis of dental caries progression can prevent invasive treatment and enable preventive treatment. In this regard, dental radiography is a widely used tool to capture dental visuals that are used for the detection and diagnosis of caries. Different deep learning (DL) techniques have been used to automatically analyse dental images for caries detection. However, most of these techniques require large-scale annotated data to train DL models. On the other hand, in clinical settings, such medical images are scarcely available and annotations are costly and time-consuming. To this end, we present an efficient self-training-based method for caries detection and segmentation that leverages a small set of labelled images for training the teacher model and a large collection of unlabelled images for training the student model. We also propose to use centroid cropped images of the caries region and different augmentation techniques for the training of self-supervised models that provide computational and performance gains as compared to fully supervised learning and standard self-supervised learning methods. We present a fully labelled dental radiographic dataset of 141 images that are used for the evaluation of baseline and proposed models. Our proposed self-supervised learning strategy has provided performance improvement of approximately 6% and 3% in terms of average pixel accuracy and mean intersection over union, respectively as compared to standard self-supervised learning. Data and code will be made available to facilitate future research.


Assuntos
Cárie Dentária , Humanos , Cárie Dentária/diagnóstico por imagem , Estudantes , Aprendizado de Máquina Supervisionado , Extremidade Superior , Processamento de Imagem Assistida por Computador
20.
Artigo em Inglês | MEDLINE | ID: mdl-36478771

RESUMO

WiFi sensing, an emerging sensing technology, has been widely used in vital sign monitoring. However, most respiration monitoring studies have focused on single-person tasks. In this paper, we propose a multi-person breathing sensing system based on WiFi signals. Specifically, we use radio frequency (RF) switch to extend the antennas to form switching antenna array. A reference channel is introduced in the receiver, which is connected to the transmitter by cable and attenuator. The phase offset introduced by asynchronous transceiver devices can be eliminated by using the ratio of the channel frequency response (CFR) between the antenna array and the reference channel. In order to realize multi-person breathing perception, we use beamforming technology to conduct two-dimensional scanning of the whole scene. After eliminating static clutter, we combine frequency domain and angle of arrival (AOA) domain analysis to construct the AOA and frequency (AOA-FREQ) spectrogram. Finally, the respiratory frequency and position of each target are obtained by clustering. Experimental results show that the proposed system can not only estimate the direction and respiration rate of multi-person, but also monitor abnormal respiration in multi-person scenarios. The proposed low-cost, non-contact, rapid multi-person respiratory detection technology can meet the requirements of long-term home health monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...