Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834384

RESUMO

Striated muscle thick filaments are composed of myosin II and several non-myosin proteins which define the filament length and modify its function. Myosin II has a globular N-terminal motor domain comprising its catalytic and actin-binding activities and a long α-helical, coiled tail that forms the dense filament backbone. Myosin alone polymerizes into filaments of irregular length, but striated muscle thick filaments have defined lengths that, with thin filaments, define the sarcomere structure. The motor domain structure and function are well understood, but the myosin filament backbone is not. Here we report on the structure of the flight muscle thick filaments from Drosophila melanogaster at 4.7 Å resolution, which eliminates previous ambiguities in non-myosin densities. The full proximal S2 region is resolved, as are the connecting densities between the Ig domains of stretchin-klp. The proteins, flightin, and myofilin are resolved in sufficient detail to build an atomic model based on an AlphaFold prediction. Our results suggest a method by which flightin and myofilin cooperate to define the structure of the thick filament and explains a key myosin mutation that affects flightin incorporation. Drosophila is a genetic model organism for which our results can define strategies for functional testing.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Filaminas/metabolismo , Miosinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Miosina Tipo II/metabolismo
2.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613818

RESUMO

Four insect orders have flight muscles that are both asynchronous and indirect; they are asynchronous in that the wingbeat frequency is decoupled from the frequency of nervous stimulation and indirect in that the muscles attach to the thoracic exoskeleton instead of directly to the wing. Flight muscle thick filaments from two orders, Hemiptera and Diptera, have been imaged at a subnanometer resolution, both of which revealed a myosin tail arrangement referred to as "curved molecular crystalline layers". Here, we report a thick filament structure from the indirect flight muscles of a third insect order, Hymenoptera, the Asian bumble bee Bombus ignitus. The myosin tails are in general agreement with previous determinations from Lethocerus indicus and Drosophila melanogaster. The Skip 2 region has the same unusual structure as found in Lethocerus indicus thick filaments, an α-helix discontinuity is also seen at Skip 4, but the orientation of the Skip 1 region on the surface of the backbone is less angled with respect to the filament axis than in the other two species. The heads are disordered as in Drosophila, but we observe no non-myosin proteins on the backbone surface that might prohibit the ordering of myosin heads onto the thick filament backbone. There are strong structural similarities among the three species in their non-myosin proteins within the backbone that suggest how one previously unassigned density in Lethocerus might be assigned. Overall, the structure conforms to the previously observed pattern of high similarity in the myosin tail arrangement, but differences in the non-myosin proteins.


Assuntos
Drosophila melanogaster , Heterópteros , Animais , Abelhas , Citoesqueleto , Sarcômeros , Drosophila , Voo Animal/fisiologia
3.
Mol Genet Genomic Med ; 6(5): 835-844, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30084161

RESUMO

BACKGROUND: We aimed to provide a set of previously reported PAH-associated missense and nonsense variants, and evaluate the pathogenicity of those variants. METHODS: The Human Gene Mutation Database, PubMed, and Google Scholar were searched for previously reported PAH-associated genes and variants. Thereafter, both exome sequencing project and exome aggregation consortium as background population searched for previously reported PAH-associated missense and nonsense variants. The pathogenicity of previously reported PAH-associated missense variants evaluated by using four in silico prediction tools. RESULTS: In total, 14 PAH-associated genes and 180 missense and nonsense variants were gathered. The BMPR2, the most frequent reported gene, encompasses 135 of 180 missense and nonsense variants. The exome sequencing project comprised 9, and the exome aggregation consortium counted 25 of 180 PAH-associated missense and nonsense variants. The TOPBP1 and ENG genes are unlikely to be the monogenic cause of PAH pathogenesis based on allele frequency in background population and prediction analysis. CONCLUSION: This is the first evaluation of previously reported PAH-associated missense and nonsense variants. The BMPR2 identified as the major gene out of 14 PAH-associated genes. Based on findings, the ENG and TOPBP1 gene are not likely to be the monogenic cause of PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proteínas de Transporte/genética , Códon sem Sentido , Proteínas de Ligação a DNA/genética , Endoglina/genética , Hipertensão Pulmonar/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Exoma , Humanos
4.
Mol Genet Genomic Med ; 4(2): 135-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27066506

RESUMO

BACKGROUND: Left ventricular non-compaction (LVNC) is a rare cardiomyopathy. Many genetic variants have been associated with LVNC. However, the number of the previous LVNC-associated variants that are common in the background population remains unknown. The aim of this study was to provide an updated list of previously reported LVNC-associated variants with biologic description and investigate the prevalence of LVNC variants in healthy general population to find false-positive LVNC-associated variants. METHODS AND RESULTS: The Human Gene Mutation Database and PubMed were systematically searched to identify all previously reported LVNC-associated variants. Thereafter, the Exome Sequencing Project (ESP) and the Exome Aggregation Consortium (ExAC), that both represent the background population, was searched for all variants. Four in silico prediction tools were assessed to determine the functional effects of these variants. The prediction results of those identified in the ESP and ExAC and those not identified in the ESP and ExAC were compared. In 12 genes, 60 LVNC-associated missense/nonsense variants were identified. MYH7 was the predominant gene, encompassing 24 of the 60 LVNC-associated variants. The ESP only harbored nine and ExAC harbored 18 of the 60 LVNC-associated variants. In total, eight out of nine ESP-positive variants overlapped with the 18 variants identified in ExAC database. CONCLUSIONS: In this article, we identified 9 ESP-positive and 18 ExAC-positive variants of 60 previously reported LVNC-associated variants, suggesting that these variants are not necessarily the monogenic cause of LVNC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...