Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36978757

RESUMO

This article discusses a new continuous flow mini pump that has been developed to improve symptoms and prognosis in patients with Heart Failure with Preserved Ejection Fraction (HFpEF), for which there are currently no established treatments. The pump is designed to discharge a reduced percentage of blood volume from the left atrium to the subclavian artery, clamped at the bifurcation with the aortic arch. The overall specifications, design parameters, and hemodynamics of this new device are discussed, along with data from in vitro circulation loop tests and numerical simulations. The article also compares the results for two configurations of the pump with respect to key indicators of hemocompatibility used in blood pump development.

2.
Polymers (Basel) ; 14(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35808798

RESUMO

The drug release profile of drug-eluting stents (DESs) is affected by a number of factors, including the formulation, design, and physicochemical properties of the utilized material. DES has been around for twenty years and despite its widespread clinical use, and efficacy in lowering the rate of target lesion restenosis, it still requires additional development to reduce side effects and provide long-term clinical stability. Unfortunately, for analyzing these implants, there is still no globally accepted in vitro test method. This is owing to the stent's complexity as well as the dynamic arterial compartments of the blood and vascular wall. The former is the source of numerous biological, chemical, and physical mechanisms that are more commonly observed in tissue, lumen, and DES. As a result, universalizing bio-relevant apparatus, suitable for liberation testing of such complex implants is difficult. This article aims to provide a comprehensive review of the methods used for in vitro release testing of DESs. Aspects related to the correlation of the release profiles in the cases of in vitro and in vivo are also addressed.

3.
Polymers (Basel) ; 13(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34451148

RESUMO

Drug-eluting stents are desirable platforms for local medicine delivery. However, the incorporation of drugs into polymers can influence the mechanical and physicochemical properties of said matrix, which is a topic that is still poorly understood. In fact, this is more noticeable since the apposition is most often accompanied by mechanical stresses on the polymer coating, which can induce therapeutic failure that can result in death. It is therefore necessary to better understand their behavior by examining their properties in conditions such as those in living beings. We studied polyurethane drug carriers made in-house. Diclofenac epolamine was chosen as a model hydrophilic medicine. We used thermal measurements (DMTA) and tensile tests. The aim was to establish the influence of the loading and release of the drug on the physicochemical properties of this polymer in the presence of a stagnant or circulating fluid medium, phosphate-buffered saline (PBS). For the two PU/drug loadings studied, the effect of the initial drug load was more marked. The free volume fraction and the number of pores in the samples increased with the increasing percent of the drug and with release time. The kinetic profiles were accelerated with the loading ratio and with the presence of flow. Young's modulus and ultimate stress were not significantly influenced by the release time. A relevant relationship between the tensile properties and the viscoelastic behavior of the samples was developed. Our results have implications for optimizing the performance of drug coatings for stents.

4.
Polymers (Basel) ; 13(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920267

RESUMO

In this study, we present a method for prediction of the drug-release profile based on the physical mechanisms that can intervene in drug release from a drug-carrier. The application presented here incorporates the effects of drug concentration and Reynolds number defining the circulating flow in the testing vein. The experimental data used relate to the release of diclofenac from samples of non-degradable polyurethane subjected to static and continuous flow. This case includes simultaneously three mechanisms: burst-release, diffusion and osmotic pressure, identified beforehand here as being able to contribute to the drug liberation. For this purpose, authors coded the Sequential Quadratic Programming Algorithm to solve the problem of non-linear optimization. The experimental data used to develop the mathematical model obtained from release studies carried out in water solution at 37 °C, for three concentrations of diclofenac and two water flow rates. We discuss the contribution of mechanisms and kinetics by considering two aforementioned parameters and, following that, we obtain the specific-model and compare the calculated results with the experimental results for the reserved cases. The results showed that drug percentage mostly affect the burst release, however flow rate has affected the osmotic release. In addition, release kinetics of all the mechanisms have increased by increasing the values of two considered parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...