Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(18): 26675-26685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451457

RESUMO

The environmental accumulation of microplastics poses a formidable global challenge, with tyre wear particles (TWPs) emerging as major and potentially harmful contributors to this particulate pollution. A critical pathway for TWPs to aquatic environments is via road drainage. While drainage assets are employed worldwide, their effectiveness in retaining microplastics of highly variable densities (TWP ~ 1-2.5 g cm3) remains unknown. This study examines their ability to impede the transfer of TWPs from the UK Strategic Road Network (SRN) to aquatic ecosystems. Samples were collected from the influent, effluent and sediments of three retention ponds and three wetlands. The rate of TWP generation is known to vary in response to vehicle speed and direction. To ascertain the significance of this variability, we further compared the mass of TWPs in drainage from curved and straight sections of the SRN across eight drainage outfalls. Pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) was used to quantify tyre wear using benzothiazole as a molecular marker for TWPs (with an internal standard benzothiazole-D4). Tyre wear was present in drainage from the SRN at concentrations of 2.86 ± 6 mg/L and was found within every sample analysed. Drainage from curved sections of the SRN contained on average a 40% greater TWP mass than straight sections but this was not significant. The presence of wetlands and retention ponds generally led to a reduction in TWP mass (74.9% ± 8.2). This effect was significant for retention ponds but not for wetlands; most probably due to variability among sites and sampling occasions. Similar drainage assets are used on a global scale; hence our results are of broad relevance to the management of TWP pollution.


Assuntos
Monitoramento Ambiental , Microplásticos , Áreas Alagadas
2.
Ambio ; 51(2): 370-382, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34628602

RESUMO

Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.


Assuntos
Ecossistema , Sedimentos Geológicos , Regiões Árticas , Mudança Climática , Camada de Gelo
3.
Mar Pollut Bull ; 172: 112897, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34482249

RESUMO

Desk-based studies have suggested tyre wear particles contribute a substantial portion of microplastic emissions to the environment, yet few empirical studies report finding tyre wear. Samples were collected from three pathways to the marine environment: atmospheric deposition, treated wastewater effluent, and untreated surface runoff. Pyrolysis coupled to gas chromatography-mass spectrometry was used to detect benzothiazole, a molecular marker for tyres. Benzothiazole was detected in each pathway, emitting tyre wear in addition to other sources of microplastics. Release via surface water drainage was the principle pathway in the regions examined. Laboratory tests indicated larger particles likely settle close to their entry points, whereas smaller particles have potential for longer-range transport and dispersal. The previous lack of reports are likely a consequence of inadequate methods of detection, rather than a low environmental presence. Further work is required to establish distribution, transport potential, and potential impacts once within the marine environment.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Microplásticos , Águas Residuárias , Poluentes Químicos da Água/análise
4.
Sci Rep ; 11(1): 6698, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758282

RESUMO

Bayesian inference and ultrasonic velocity have been used to estimate the self-association concentration of the asphaltenes in toluene using a changepoint regression model. The estimated values agree with the literature information and indicate that a lower abundance of the longer side-chains can cause an earlier onset of asphaltene self-association. Asphaltenes constitute the heaviest and most complicated fraction of crude petroleum and include a surface-active sub-fraction. When present above a critical concentration in pure solvent, asphaltene "monomers" self-associate and form nanoaggregates. Asphaltene nanoaggregates are thought to play a significant role during the remediation of petroleum spills and seeps. When mixed with water, petroleum becomes expensive to remove from the water column by conventional methods. The main reason of this difficulty is the presence of highly surface-active asphaltenes in petroleum. The nanoaggregates are thought to surround the water droplets, making the water-in-oil emulsions extremely stable. Due to their molecular complexity, modelling the self-association of the asphaltenes can be a very computationally-intensive task and has mostly been approached by molecular dynamic simulations. Our approach allows the use of literature and experimental data to estimate the nanoaggregation and its credible intervals. It has a low computational cost and can also be used for other analytical/experimental methods probing a changepoint in the molecular association behaviour.

5.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190359, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862804

RESUMO

The Barents Sea is experiencing long-term climate-driven changes, e.g. modification in oceanographic conditions and extensive sea ice loss, which can lead to large, yet unquantified disruptions to ecosystem functioning. This key region hosts a large fraction of Arctic primary productivity. However, processes governing benthic and pelagic coupling are not mechanistically understood, limiting our ability to predict the impacts of future perturbations. We combine field observations with a reaction-transport model approach to quantify organic matter (OM) processing and disentangle its drivers. Sedimentary OM reactivity patterns show no gradients relative to sea ice extent, being mostly driven by seafloor spatial heterogeneity. Burial of high reactivity, marine-derived OM is evident at sites influenced by Atlantic Water (AW), whereas low reactivity material is linked to terrestrial inputs on the central shelf. Degradation rates are mainly driven by aerobic respiration (40-75%), being greater at sites where highly reactive material is buried. Similarly, ammonium and phosphate fluxes are greater at those sites. The present-day AW-dominated shelf might represent the future scenario for the entire Barents Sea. Our results represent a baseline systematic understanding of seafloor geochemistry, allowing us to anticipate changes that could be imposed on the pan-Arctic in the future if climate-driven perturbations persist. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Mudança Climática , Ecossistema , Organismos Aquáticos/metabolismo , Regiões Árticas , Simulação por Computador , Sedimentos Geológicos/química , Camada de Gelo , Modelos Biológicos , Compostos Orgânicos/metabolismo , Água do Mar/química
6.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190364, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862811

RESUMO

Over the last few decades, the Barents Sea experienced substantial warming, an expansion of relatively warm Atlantic water and a reduction in sea ice cover. This environmental change forces the entire Barents Sea ecosystem to adapt and restructure and therefore changes in pelagic-benthic coupling, organic matter sedimentation and long-term carbon sequestration are expected. Here we combine new and existing organic and inorganic geochemical surface sediment data from the western Barents Sea and show a clear link between the modern ecosystem structure, sea ice cover and the organic carbon and CaCO3 contents in Barents Sea surface sediments. Furthermore, we discuss the sources of total and reactive iron phases and evaluate the spatial distribution of organic carbon bound to reactive iron. Consistent with a recent global estimate we find that on average 21.0 ± 8.3 per cent of the total organic carbon is associated to reactive iron (fOC-FeR) in Barents Sea surface sediments. The spatial distribution of fOC-FeR, however, seems to be unrelated to sea ice cover, Atlantic water inflow or proximity to land. Future Arctic warming might, therefore, neither increase nor decrease the burial rates of iron-associated organic carbon. However, our results also imply that ongoing sea ice reduction and the associated alteration of vertical carbon fluxes might cause accompanied shifts in the Barents Sea surface sedimentary organic carbon content, which might result in overall reduced carbon sequestration in the future. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Sedimentos Geológicos/química , Camada de Gelo/química , Regiões Árticas , Carbonato de Cálcio/análise , Carbono/análise , Ciclo do Carbono , Ecossistema , Aquecimento Global , Ferro/análise , Noruega , Oceanos e Mares , Compostos Orgânicos/análise
7.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20200223, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862813

RESUMO

Process-based, mechanistic investigations of organic matter transformation and diagenesis directly beneath the sediment-water interface (SWI) in Arctic continental shelves are vital as these regions are at greatest risk of future change. This is in part due to disruptions in benthic-pelagic coupling associated with ocean current change and sea ice retreat. Here, we focus on a high-resolution, multi-disciplinary set of measurements that illustrate how microbial processes involved in the degradation of organic matter are directly coupled with inorganic and organic geochemical sediment properties (measured and modelled) as well as the extent/depth of bioturbation. We find direct links between aerobic processes, reactive organic carbon and highest abundances of bacteria and archaea in the uppermost layer (0-4.5 cm depth) followed by dominance of microbes involved in nitrate/nitrite and iron/manganese reduction across the oxic-anoxic redox boundary (approx. 4.5-10.5 cm depth). Sulfate reducers dominate in the deeper (approx. 10.5-33 cm) anoxic sediments which is consistent with the modelled reactive transport framework. Importantly, organic matter reactivity as tracked by organic geochemical parameters (n-alkanes, n-alkanoic acids, n-alkanols and sterols) changes most dramatically at and directly below the SWI together with sedimentology and biological activity but remained relatively unchanged across deeper changes in sedimentology. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Ecossistema , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Compostos Orgânicos/análise , Água do Mar/química , Água do Mar/microbiologia , Regiões Árticas , Biotransformação , Ciclo do Carbono , Mudança Climática , Bases de Dados Factuais , Fenômenos Microbiológicos , Noruega , Oceanos e Mares , Oxirredução
8.
Elife ; 82019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31210129

RESUMO

Fossils were thought to lack original organic molecules, but chemical analyses show that some can survive. Dinosaur bone has been proposed to preserve collagen, osteocytes, and blood vessels. However, proteins and labile lipids are diagenetically unstable, and bone is a porous open system, allowing microbial/molecular flux. These 'soft tissues' have been reinterpreted as biofilms. Organic preservation versus contamination of dinosaur bone was examined by freshly excavating, with aseptic protocols, fossils and sedimentary matrix, and chemically/biologically analyzing them. Fossil 'soft tissues' differed from collagen chemically and structurally; while degradation would be expected, the patterns observed did not support this. 16S rRNA amplicon sequencing revealed that dinosaur bone hosted an abundant microbial community different from lesser abundant communities of surrounding sediment. Subsurface dinosaur bone is a relatively fertile habitat, attracting microbes that likely utilize inorganic nutrients and complicate identification of original organic material. There exists potential post-burial taphonomic roles for subsurface microorganisms.


The chances of establishing a real-world Jurassic Park are slim. During the fossilization process, biological tissues degrade over millions of years, with some types of molecules breaking down faster than others. However, traces of biological material have been found inside some fossils. While some researchers believe these could be the remains of ancient proteins, blood vessels, and cells, traditionally thought to be among the least stable components of bone, others think that they have more recent sources. One hypothesis is that they are in fact biofilms formed by bacteria. To investigate the source of the biological material in fossil bone, Saitta et al. performed a range of analyses on the fossilized bones of a horned dinosaur called Centrosaurus. The bones were carefully excavated in a manner to reduce contamination, and the sediment the bones had been embedded in was also tested for comparison. Saitta et al. found no evidence of ancient dinosaur proteins. However, the fossils contained more organic carbon, DNA, and certain amino acids than the sediment surrounding them. Most of these appeared to have a very recent source. Sequencing the genetic material revealed that the fossil had become a habitat for an unusual community of microbes that is not found in the surrounding sediment or above ground. These buried microbes may have evolved unique ways to thrive inside fossils. Future work could investigate how these unusual organisms live and whether the communities vary in different parts of the world.


Assuntos
Osso e Ossos/microbiologia , Dinossauros/microbiologia , Meio Ambiente , Microbiota , Compostos Orgânicos/análise , Aminoácidos/análise , Animais , Técnica de Desmineralização Óssea , Osso e Ossos/ultraestrutura , DNA/genética , Fósseis , Liofilização , Sedimentos Geológicos/química , Ácido Clorídrico/química , Microbiota/genética , RNA Ribossômico 16S/genética , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Philos Trans R Soc Lond B Biol Sci ; 373(1739)2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29254964

RESUMO

Terrestrialization depended on the evolution of biosynthetic pathways for biopolymers including lignin, cutin and suberin, which were concentrated in specific tissues, layers or organs such as the xylem, cuticle and roots on the submillimetre scale. However, it is often difficult, or even impossible especially for individual cells, to resolve the biomolecular composition of the different components of fossil plants on such a scale using the well-established coupled techniques of gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Here, we report the application of techniques for surface analysis to investigate the composition of Rhynia gwynne-vaughanii X-ray photoelectron spectroscopy of two different spots (both 300 µm × 600 µm) confirmed the presence of carbon. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed 'chemical maps' (imaging mode with 300 nm resolution) of aliphatic and aromatic carbon in the intact fossil that correlate with the vascular structures observed in high-resolution optical images. This study shows that imaging ToF-SIMS has value for determining the location of the molecular components of fossil embryophytes while retaining structural information that will help elucidate how terrestrialization shaped the early evolution of land plant cell wall biochemistry.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.


Assuntos
Carbono/análise , Embriófitas/química , Fósseis/diagnóstico por imagem , Paleontologia/métodos , Espectrometria de Massa de Íon Secundário/métodos , Compostos Orgânicos/análise
10.
Sci Rep ; 7(1): 16125, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170456

RESUMO

Asphaltenes constitute the heaviest, most polar and aromatic fraction of petroleum crucial to the formation of highly-stable water-in-crude oil emulsions. The latter occur during crude oil production as well as spills and cause difficulties to efficient remediation practice. It is thought that in nanoaggregate form, asphaltenes create elastic layers around water droplets enhancing stability of the emulsion matrix. Ultrasonic characterisation is a high-resolution non-invasive tool in colloidal analysis shown to successfully identify asphaltene nanoaggregation in toluene. The high sensitivity of acoustic velocity to molecular rearrangements and ease in implementation renders it an attractive method to study asphaltene phase properties. Currently, aggregation is thought to correspond to an intersection of two concentration-ultrasonic velocity regressions. Our measurements indicate a variation in the proximity of nanoaggregation which is not accounted for by present models. We attribute this uncertainty to physico-chemical heterogeneity of the asphaltene fraction driven by variation in molecular size and propose a critical nanoaggregation region. We treated asphaltenes from North and South American crude oils with ruthenium ion catalysed oxidation to characterize their n-alkyl appendages attached to aromatic cores. Principal component analysis was performed to investigate the coupling between asphaltene structures and velocity measurements and their impact on aggregation.

11.
Sci Rep ; 7(1): 13697, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057970

RESUMO

The state of preservation of wood in two samples from the Hanson Logboat, currently on display in Derby Museum and Art Gallery, was analysed using elemental analysis (EA), pyrolysis-gas chromatography/flame ionisation detection (Py-GC/FID), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and scanning electron microscopy (SEM). The samples were collected in 2003, after the boat had undergone conservation, and in 2011 after the condition of the boat began to deteriorate. Solvent extraction enabled removal of polyethylene glycol, with which the wood had been impregnated during conservation, allowing the degradation of the cellulose and lignin polymeric components of the woods to be assessed. Elemental compositions (C, H, N, O, S), Py-GC/FID, Py-GC/MS and SEM imaging reveal extensive degradation of the wood polymers during the eight year period since conservation.

12.
Plant Soil ; 399: 13-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26900180

RESUMO

BACKGROUND AND AIMS: Plant-derived phenols are a major input to the terrestrial carbon cycle that might be expected to contribute substantially to dissolved organic carbon (DOC) losses from soils. This study investigated changes in DOC and phenols in leachates from soil treated with individual plant litter types under seasonal temperature change. METHODS: Senescing grass, buttercup, ash and oak litters were applied to soil lysimeters. Leachates were collected over 22 months and analysed for DOC and phenols. Phenols in litter and DOC were analysed using on-line thermally assisted hydrolysis and methylation with tetramethylammonium hydroxide (TMAH). RESULTS: Mass loss differed between litter type (buttercup>ash>grass>oak). Phenol concentrations in the senescing litters (<2 % TOC) were small, resulting in minor losses to water. Seasonal soil temperature positively correlated with DOC loss from litter-free soils. An initial correlation between temperature change and total phenol concentration in grass and ash litter treatment leachates diminished with time. Dissolved phenol variety in all litter-amended soil leachates increased with time. CONCLUSIONS: Plant-derived phenols from senescing litter made a minor contribution to DOC loss from soils. The strength of the relationship between seasonal temperature change and phenol type and abundance in DOC changed with time and was influenced by litter type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...