Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 213: 108791, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861818

RESUMO

Despite the tangible benefits of copper nanoparticles (CuNPs) for plants, the increasing use of CuNPs poses a threat to plants and the environment. Although miRNAs have been shown to mediate heat shock and CuNPs by altering gene expression, no study has investigated how CuNPs in combination with heat shock (HS) affect the miRNA expression profile. Here, we exposed tomato plants to 0.01 CuONPs at 42 °C for 1 h after exposure. It was found that the expression levels of miR156a, miR159a and miR172a and their targets SPL3, MYB33 and AP2a were altered under CuNPs and HS + CuNPs. This alteration accelerated the change of vegetative phase and the process of leaf senescence. The overexpression of miR393 under CuNPs and HS + CuNPs could also be an indicator of the attenuation of leaf morphology. Interestingly, the down-regulation of Cu/ZnSOD1 and Cu/ZnSOD2 as target genes of miR398a, which showed strong abnormal expression, was replaced by FeSOD (FSD1), indicating the influence of CuNPs. In addition, CuNPs triggered the expression of some important genes of heat shock response, including HsFA2, HSP70-9 and HSP90-3, which showed lower expression compared to HS. Thus, CuNPs play an important role in altering the gene expression pathway during heat stress.


Assuntos
Cobre , Resposta ao Choque Térmico , Nanopartículas Metálicas , MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cobre/metabolismo , Resposta ao Choque Térmico/genética , Nanopartículas Metálicas/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , RNA de Plantas/genética , RNA de Plantas/metabolismo
2.
Plants (Basel) ; 11(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35736763

RESUMO

The present investigation aims to highlight the role of salt priming in mitigating salt stress on faba bean. In the absence of priming, the results reflected an increase in H2O2 generation and lipid peroxidation in plants subjected to 200 mM salt shock for one week, accompanied by a decline in growth, photosynthetic pigments, and yield. As a defense, the shocked plants showed enhancements in ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POX), and superoxide dismutase (SOD) activities. Additionally, the salt shock plants revealed a significant increase in phenolics and proline content, as well as an increase in the expression levels of glutathione (GSH) metabolism-related genes (the L-ascorbate peroxidase (L-APX) gene, the spermidine synthase (SPS) gene, the leucyl aminopeptidase (LAP) gene, the aminopeptidase N (AP-N) gene, and the ribonucleo-side-diphosphate reductase subunit M1 (RDS-M) gene). On the other hand, priming with increasing concentrations of NaCl (50-150 mM) exhibited little significant reduction in some growth- and yield-related traits. However, it maintained a permanent alert of plant defense that enhanced the expression of GSH-related genes, proline accumulation, and antioxidant enzymes, establishing a solid defensive front line ameliorating osmotic and oxidative consequences of salt shock and its injurious effect on growth and yield.

3.
Plants (Basel) ; 10(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34371581

RESUMO

Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity's food security. Developing effective marker-assisted selection programs for leaf rust resistance in wheat mainly depends on the availability of deep mining of resistance genes within the germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence of 28 leaf rust resistance (Lr) genes within the studied wheat collection. The field evaluation results indicated that most of these varieties demonstrated high to moderate leaf rust resistance levels except Gemmeiza 1, Gemmeiza 9, Giza162, Giza 163, Giza 164, Giza 165, Sids 1, Sids 2, Sids 3, Sakha 62, Sakha 69, Sohag 3 and Bany Swif 4, which showed fast rusting behavior. On the other hand, out of these 28 Lr genes tested against the wheat collection, 21 Lr genes were successfully identified. Out of 15 Lr genes reported conferring the adult plant resistant or slow rusting behavior in wheat, only five genes (Lr13, Lr22a, Lr34, Lr37, and Lr67) were detected within the Egyptian collection. Remarkedly, the genes Lr13, Lr19, Lr20, Lr22a, Lr28, Lr29, Lr32, Lr34, Lr36, Lr47, and Lr60, were found to be the most predominant Lr genes across the 50 Egyptian wheat varieties. The molecular phylogeny results also inferred the same classification of field evaluation, through grouping genotypes characterized by high to moderate leaf rust resistance in one cluster while being highly susceptible in a separate cluster, with few exceptions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA