Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 21(12): e13731, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307912

RESUMO

Parkinson's disease (PD) is characterized by degeneration of neurons, particularly dopaminergic neurons in the substantia nigra. PD brains show accumulation of α-synuclein in Lewy bodies and accumulation of dysfunctional mitochondria. However, the mechanisms leading to mitochondrial pathology in sporadic PD are poorly understood. PINK1 is a key for mitophagy activation and recycling of unfit mitochondria. The activation of mitophagy depends on the accumulation of uncleaved PINK1 at the outer mitochondrial membrane and activation of a cascade of protein ubiquitination at the surface of the organelle. We have now found that SIAH3, a member of the SIAH proteins but lacking ubiquitin-ligase activity, is increased in PD brains and cerebrospinal fluid and in neurons treated with α-synuclein preformed fibrils (α-SynPFF). We also observed that SIAH3 is aggregated together with PINK1 in the mitochondria of PD brains. SIAH3 directly interacts with PINK1, leading to their intra-mitochondrial aggregation in cells and neurons and triggering a cascade of toxicity with PINK1 inactivation along with mitochondrial depolarization and neuronal death. We also found that SIAH1 interacts with PINK1 and promotes ubiquitination and proteasomal degradation of PINK1. Similar to the dimerization of SIAH1/SIAH2, SIAH3 interacts with SIAH1, promoting its translocation to mitochondria and preventing its ubiquitin-ligase activity toward PINK1. Our results support the notion that the increase in SIAH3 and intra-mitochondrial aggregation of SIAH3-PINK1 may mediate α-synuclein pathology by promoting proteotoxicity and preventing the elimination of dysfunctional mitochondria. We consider it possible that PINK1 activity is decreased in sporadic PD, which impedes proper mitochondrial renewal in the disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo , Mitofagia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina
2.
Proc Natl Acad Sci U S A ; 114(50): 13176-13181, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180403

RESUMO

α-Synuclein accumulation is a pathological hallmark of Parkinson's disease (PD). Ubiquitinated α-synuclein is targeted to proteasomal or lysosomal degradation. Here, we identify SUMOylation as a major mechanism that counteracts ubiquitination by different E3 ubiquitin ligases and regulates α-synuclein degradation. We report that PIAS2 promotes SUMOylation of α-synuclein, leading to a decrease in α-synuclein ubiquitination by SIAH and Nedd4 ubiquitin ligases, and causing its accumulation and aggregation into inclusions. This was associated with an increase in α-synuclein release from the cells. A SUMO E1 inhibitor, ginkgolic acid, decreases α-synuclein levels by relieving the inhibition exerted on α-synuclein proteasomal degradation. α-Synuclein disease mutants are more SUMOylated compared with the wild-type protein, and this is associated with increased aggregation and inclusion formation. We detected a marked increase in PIAS2 expression along with SUMOylated α-synuclein in PD brains, providing a causal mechanism underlying the up-regulation of α-synuclein SUMOylation in the disease. We also found a significant proportion of Lewy bodies in nigral neurons containing SUMO1 and PIAS2. Our observations suggest that SUMOylation of α-synuclein by PIAS2 promotes α-synuclein aggregation by two mutually reinforcing mechanisms. First, it has a direct proaggregatory effect on α-synuclein. Second, SUMOylation facilitates α-synuclein aggregation by blocking its ubiquitin-dependent degradation pathways and promoting its accumulation. Therefore, inhibitors of α-synuclein SUMOylation provide a strategy to reduce α-synuclein levels and possibly aggregation in PD.


Assuntos
Doença de Parkinson/metabolismo , Proteólise , Sumoilação , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Ratos Sprague-Dawley , Salicilatos/farmacologia , Substância Negra/metabolismo
3.
Hum Mol Genet ; 25(16): 3476-3490, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27334109

RESUMO

PTEN-induced putative kinase 1 (PINK1) and parkin are mutated in familial forms of Parkinson's disease and are important in promoting the mitophagy of damaged mitochondria. In this study, we showed that synphilin-1 interacted with PINK1 and was recruited to the mitochondria. Once in the mitochondria, it promoted PINK1-dependent mitophagy, as revealed by Atg5 knockdown experiments and the recruitment of LC3 and Lamp1 to the mitochondria. PINK1-synphilin-1 mitophagy did not depend on PINK1-mediated phosphorylation of synphilin-1 and occurred in the absence of parkin. Synphilin-1 itself caused depolarization of the mitochondria and increased the amount of uncleaved PINK1 at the organelle. Furthermore, synphilin-1 recruited seven in absentia homolog (SIAH)-1 to the mitochondria where it promoted mitochondrial protein ubiquitination and subsequent mitophagy. Mitophagy via this pathway was impaired by synphilin-1 knockdown or by the use of a synphilin-1 mutant that is unable to recruit SIAH-1 to the mitochondria. Likewise, knockdown of SIAH-1 or the use of a catalytically inactive SIAH-1 mutant abrogated mitophagy. PINK1 disease mutants failed to recruit synphilin-1 and did not activate mitophagy, indicating that PINK1-synphilin-1-SIAH-1 represents a new parkin-independent mitophagy pathway. Drugs that activate this pathway will provide a novel strategy to promote the clearance of damaged mitochondria in Parkinson's disease.


Assuntos
Proteínas de Transporte/genética , Mitofagia/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Doença de Parkinson/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Proteína 5 Relacionada à Autofagia/genética , Proteínas de Transporte/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fosforilação , Ligação Proteica , Proteínas Quinases/metabolismo , Transdução de Sinais , Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...