Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38733442

RESUMO

In this work, the corn straw (CS) with concentrations of 3%, 6%, and 9% (w/v) were pretreated by rumen fluid (RF) and then used for batched mesophilic biogas production. The results showed that after a 6-day pretreatment, volatile fatty acid (VFAs) production of 3.78, 8.27, and 10.4 g/L could be found in 3%, 6%, and 9%, respectively. When concerning with biogas production, the highest accumulative methane production of 149.1 mL CH4/g volatile solid was achieved by 6% pretreated CS, which was 22% and 45% higher than 3% and 9%, respectively. Also, it was 3.6 times higher than the same concentration of unpretreated CS. The results of the microbial community structure analysis revealed that the 6% CS pretreatment not only maintained a microbial community with the highest richness and diversity, but also exhibited the highest relative abundance of Firmicutes (45%) and Euryarchaeota (3.9%). This high abundance was conducive to its elevated production of VFAs and methane. These findings provide scientific reference for the utilization of CS and support the development of agricultural waste resource utilization and environmental protection.

2.
J Appl Microbiol ; 132(3): 2020-2033, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34265162

RESUMO

AIM: This study aims to use fermentation waste of ethanol production (solid and liquid) for riboflavin and recycling of bacterial biomass as biofertilizers to enhance the growth of some oily crop plants. METHODS AND RESULTS: Out of 10 yeast isolates from fresh milk, Clavispora lusitaniae ASU 33 (MN583181) was able to ferment different concentrations of glucose (2.5%, 5%, 7.5%, 10%, 15% and 20%) into ethanol with high efficiency at 10%. Among seven non-Lactobacillus bacterial isolates recovered from cheese samples, two bacterial isolates Bacillus subtlis-SR2 (MT002768) and Novosphingobium panipatense-SR3 (MT002778) were selected for their high riboflavin production. Different media (control medium, fermentation waste medium and a mixture of the fermentation waste medium and control medium [1:1]) were used for riboflavin production. These media were inoculated by a single or mixture of B. subtlis-SR2, N. panipatense-SR3. The addition of the waste medium of ethanol production to the control medium (1:1) had a stimulatory effect on riboflavin production whether inoculated with either a single strain or a mixture of B. subtlis-SR2 and N. panipatense-SR3. A mixture of fermentation waste and control media inoculated with N. panipatense produced a high riboflavin yield in comparison with other media. Inoculation of Zea mays and Ocimum basilicum plants with either the bacterial biomass waste of riboflavin production (B. subtlis or N. panipatense) or a mixture of B. subtlis and N. panipatense) shows a stimulatory effect on the plant growth in comparison with control (uninoculated plants). CONCLUSIONS: These results demonstrate the possibility of minimizing the cost of riboflavin and biofertilizer manufacturing via interlinking ethanol and riboflavin with the biofertilizer production technology. SIGNIFICANCE AND IMPACT OF STUDY: This study outlines the methods of evaluating the strength of spent media by applying procedures developed in the vitamin production industries. Furthermore, bacterial biomass waste can act as an environmentally friendly alternative for agrochemicals.


Assuntos
Etanol , Olea , Fermentação , Riboflavina , Saccharomyces cerevisiae
3.
Anaerobe ; 48: 135-143, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28823884

RESUMO

This study aims to demonstrate the recycling of food processing wastes as a low cost-effective substrate for acetone - butanol - ethanol (ABE) production. Potato peels and cheese whey were utilized during fermentation with eight local Clostridium strains in addition to the commercial strain, C. acetobutylicum ATCC 824 for ABE and organic acids production. From potato peels, Clostridium beijerinckii ASU10 produced the highest ABE production (17.91 g/l) representing 61.3% butanol (10.98 g/l), 33.6% acetone (6.02 g/l) and 5.1% ethanol (0.91 g/l). While, C. chauvoei ASU12 showed the highest acid production (8.15 g/l) including 5.50 and 2.61 g/l acetic and butyric acids, respectively. Use of cheese whey as fermentable substrate exhibited a substantial increase in ethanol ratio and decrease in butanol ratio compared to those produced from potato peels. Clostridium beijerinckii ASU5 produced the highest ABE concentration (7.13 g/l) representing 50.91% butanol (3.63 g/l), 35.34% acetone (2.52 g/l) and 13.74% ethanol (0.98 g/l). The highest acid production (8.00 g/l) was obtained by C. beijerinckii ASU5 representing 4.89 and 3.11 g/l for acetic and butyric acid, respectively. Supplementation of potato peels with an organic nitrogen source showed NH4NO3 promoted ABE production more than yeast extract. In conclusion, this study introduced an ecofriendly and economical practice for utilization of food processing wastes (renewable substrates as potato peels and cheese whey) for biofuel production using various Clostridium strains.


Assuntos
Biocombustíveis , Biotransformação , Manipulação de Alimentos , Resíduos , Acetona/metabolismo , Biodegradação Ambiental , Butanóis/metabolismo , Etanol/metabolismo , Fermentação , Solanum tuberosum/metabolismo , Amido/metabolismo , Zea mays
4.
Anaerobe ; 2017 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-28679108

RESUMO

This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the editor and publisher. The publisher regrets that an error occurred which led to the premature publication of this paper. This error bears no reflection on the article or its authors. The publisher apologizes to the authors and the readers for this unfortunate error.

5.
Anaerobe ; 34: 125-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26014369

RESUMO

An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production.


Assuntos
Acetona/metabolismo , Álcoois/metabolismo , Biocombustíveis , Biomassa , Clostridium acetobutylicum/metabolismo , Cunninghamella/crescimento & desenvolvimento , Hidrogênio/metabolismo , Anaerobiose , Biotransformação
6.
Anaerobe ; 32: 77-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25557787

RESUMO

One hundred and seven mesophilic isolates of Clostridium were isolated from agricultural soils cultivated with different plants in Assuit Governorate, Egypt. Eighty isolates (out of 107) showed the ability to produce ABE (Acetone, butanol and ethanol) on T6 medium ranging from 0.036 to 31.89 g/L. The highest numbers of ABE producing isolates were obtained from soil samples of potato contributing 27 isolates, followed by 18 isolates from wheat and 10 isolates from onion. On the other hand, there were three native isolates that produced ABE more than those produced by the reference isolate Clostridium acetobutylicum ATCC 824 (11.543 g/L). The three isolates were identified based on phenotypic and gene encoding 16S rRNA as Clostridium beijerinckii ASU10 (KF372577), Clostridium chauvoei ASU55 (KF372580) and Clostridium roseum ASU58 (KF372581). The highest ABE level from substandard and surplus dates was produced by C. beijerinckii ASU10 (24.07 g/L) comprising butanol 67.15% (16.16 g/L), acetone 30.73% (7.4 g/L) and ethanol 2.12% (0.51 g/L), while C. roseum ASU58 and C. chauvoei ASU55 produced ABE contributing 20.20 and 13.79 g/L, respectively. ABE production by C. acetobutylicum ATCC 824 was 15.01 g/L. This study proved that the native strains C. beijerinckii ASU10 and C. roseum ASU58 have high competitive efficacy on ABE production from economical substrate as substandard and surplus date fruits. Additionally, using this substrate without any nutritional components is considered to be a commercial substrate for desired ABE production.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Fermentação , Biocombustíveis , Clostridium/classificação , Clostridium/genética , Clostridium/isolamento & purificação , Genótipo , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo
7.
Ecotoxicology ; 23(5): 946-59, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24740320

RESUMO

The objective of this study is to explore the response of an activated Rhizobium tibeticum inoculum with a mixture of hesperetin (H) and apigenin (A) to improve the growth, nodulation, and nitrogen fixation of fenugreek (Trigonella foenum graecum L.) grown under nickel (Ni) stress. Three different sets of fenugreek seed treatments were conducted, in order to investigate the activated R. tibeticum pre-incubation effects on nodulation, nitrogen fixation and growth of fenugreek under Ni stress. Group (I): uninoculated seeds with R. tibeticum, group (II): inoculated seeds with uninduced R. tibeticum group (III): inoculated seeds with induced R. tibeticum. The present study revealed that Ni induced deleterious effects on rhizobial growth, nod gene expression, nodulation, phenylalanine ammonia-lyase (PAL) and glutamine synthetase activities, total flavonoids content and nitrogen fixation, while the inoculation with an activated R. tibeticum significantly improved these values compared with plants inoculated with uninduced R. tibeticum. PAL activity of roots plants inoculated with induced R. tibeticum and grown hydroponically at 75 and 100 mg L(-1) Ni and was significantly increased compared with plants receiving uninduced R. tibeticum. The total number and fresh mass of nodules, nitrogenase activity of plants inoculated with induced cells grown in soil treated up to 200 mg kg(-1) Ni were significantly increased compared with plants inoculated with uninduced cells. Plants inoculated with induced R. tibeticum dispalyed a significant increase in the dry mass compared with those treated with uninduced R. tibeticum. Activation of R. tibeticum inoculum with a mixture of hesperetin and apigenin has been proven to be practically important in enhancing nodule formation, nitrogen fixation and growth of fenugreek grown in Ni contaminated soils.


Assuntos
Apigenina/farmacologia , Hesperidina/farmacologia , Níquel/toxicidade , Rhizobium/efeitos dos fármacos , Trigonella/efeitos dos fármacos , Flavonoides/análise , Glutamato-Amônia Ligase/metabolismo , Fixação de Nitrogênio , Proteínas Adaptadoras de Sinalização NOD , Fenilalanina Amônia-Liase/metabolismo , Exsudatos de Plantas/química , Nodulação , Distribuição Aleatória , Rhizobium/crescimento & desenvolvimento , Estresse Fisiológico , Simbiose/efeitos dos fármacos , Trigonella/metabolismo , Trigonella/microbiologia
8.
Microbiol Res ; 169(1): 49-58, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-23920230

RESUMO

Egyptian soils are generally characterized by slightly alkaline to alkaline pH values (7.5-8.7) which are mainly due to its dry environment. In arid and semi-arid regions, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. Alkaline soils have fertility problems due to poor physical properties which adversely affect the growth and the yield of crops. Therefore, this study was devoted to investigating the synergistic interaction of Rhizobium and arbuscular mycorrhizal fungi for improving growth of faba bean grown in alkaline soil. A total of 20 rhizobial isolates and 4 species of arbuscular mycorrhizal fungi (AMF) were isolated. The rhizobial isolates were investigated for their ability to grow under alkaline stress. Out of 20 isolates 3 isolates were selected as tolerant isolates. These 3 rhizobial isolates were identified on the bases of the sequences of the gene encoding 16S rRNA and designated as Rhizobium sp. Egypt 16 (HM622137), Rhizobium sp. Egypt 27 (HM622138) and Rhizobium leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The best alkaline tolerant was R. leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The effect of R. leguminosarum bv. viciae STDF-Egypt 19 and mixture of AMF (Acaulospora laevis, Glomus geosporum, Glomus mosseae and Scutellospora armeniaca) both individually and in combination on nodulation, nitrogen fixation and growth of Vicia faba under alkalinity stress were assessed. A significant increase over control in number and mass of nodules, nitrogenase activity, leghaemoglobin content of nodule, mycorrhizal colonization, dry mass of root and shoot was recorded in dual inoculated plants than plants with individual inoculation. The enhancement of nitrogen fixation of faba bean could be attributed to AMF facilitating the mobilization of certain elements such as P, Fe, K and other minerals that involve in synthesis of nitrogenase and leghaemoglobin. Thus it is clear that the dual inoculation with Rhizobium and AMF biofertilizer is more effective for promoting growth of faba bean grown in alkaline soils than the individual treatment, reflecting the existence of synergistic relationships among the inoculants.


Assuntos
Fungos/fisiologia , Micorrizas/fisiologia , Desenvolvimento Vegetal , Rhizobium leguminosarum/fisiologia , Simbiose , Vicia faba/crescimento & desenvolvimento , Vicia faba/microbiologia , Álcalis/toxicidade , Egito , Fungos/isolamento & purificação , Interações Microbianas , Micorrizas/isolamento & purificação , Fixação de Nitrogênio , Nodulação , Rhizobium leguminosarum/efeitos dos fármacos , Rhizobium leguminosarum/isolamento & purificação
9.
Arch Environ Contam Toxicol ; 66(2): 303-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24366585

RESUMO

The goal of this study was to investigate the response of activation of Rhizobium tibeticum with mixture of hesperetin and apigenin to improve growth, nodulation, and nitrogen fixation of fenugreek grown under cobalt (Co) stress. The current study showed that high concentrations of Co-induced noxious effects on rhizobial growth, nod gene expression, nodulation, phenylalanine ammonia-lyase (PAL) and glutamine synthetase (GS) activities, total flavonoid content, and nitrogen fixation. Addition of a mixture of hesperetin and apigenin to growth medium supplemented with different concentrations of Co significantly increased bacterial growth. PAL activity of roots grown hydroponically at 100 mg kg(-1) Co and inoculated with induced R. tibeticum was significantly increased compared with plants receiving uninduced R. tibeticum. Total flavonoid content of root exudates of plants inoculated with activated R. tibeticum was significantly increased compared with inoculated plants with unactivated R. tibeticum or uninoculated plants at variant Co dosages. Application of 50 mg kg(-1) Co significantly increased nodulation, GS, nitrogenase activity, and biomass of plants inoculated with either or uninduced R. tibeticum. The total number and fresh mass of nodules, nitrogenase activity, and biomass of plants inoculated with induced cells grown in soil treated with 100 and 200 mg kg(-1) Co were significantly increased compared with plants inoculated with uninduced cells. Induced R. tibeticum with flavonoids significantly alleviates the adverse effect of Co on nod gene expression and therefore enhances nitrogen fixation. Induction of R. tibeticum with compatible flavonoids could be of practical importance in augmenting growth and nitrogen fixation of fenugreek grown in a Co-contaminated agroecosystem.


Assuntos
Cobalto/toxicidade , Raízes de Plantas/crescimento & desenvolvimento , Rhizobium/fisiologia , Poluentes do Solo/toxicidade , Trigonella/fisiologia , Flavonoides/metabolismo , Fixação de Nitrogênio , Nodulação/fisiologia , Raízes de Plantas/microbiologia , Solo/química , Simbiose , Trigonella/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...