Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(26): 40190-40203, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35119631

RESUMO

5-fluorouracil (5-FU) is a widely used chemotherapeutic drug, but its hepatotoxicity challenges its clinical use. Thus, searching for a hepatoprotective agent is highly required to prevent the accompanied hepatic hazards. The current study aimed to investigate the potential benefit and mechanisms of action of rupatadine (RU), a Platelet-activating factor (PAF) antagonist, in the prevention of 5-FU-related hepatotoxicity in rats. Hepatotoxicity was developed in male albino rats by a single 5-FU (150 mg/kg) intra-peritoneal injection on the 7th day of the experiment. RU (3 mg/kg/day) was orally administrated to the rodents for 10 days. Hepatic toxicity was assessed by measuring both liver and body weights, serum alanine aminotransferase and aspartate aminotransferase (ALT and AST), hepatic oxidative stress parameters (malondialdehyde (MDA), nitric oxide levels (NOx), reduced glutathione (GSH), superoxide dismutase (SOD)), and heme oxygenase-1 (HO-1). Inflammatory markers expressions (inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNFα), interleukins; IL-1B, IL-6), the apoptotic marker (caspase-3), and PAF were measured in the hepatic tissue. 5-FU-induced hepatotoxicity was proved by the biochemical along with histopathological assessments. RU ameliorated 5-FU-induced liver damage as proved by the improved serum ALT, AST, and hepatic oxidative stress parameters, the attenuated expression of hepatic pro-inflammatory cytokines and PAF, and the up-regulation of HO-1. Therefore, it can be concluded that RU pretreatment exerted a hepatoprotective effect against 5-FU-induced liver damage through both its powerful anti-inflammatory, antioxidant, and anti-apoptotic effect.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Heme Oxigenase-1 , Alanina Transaminase , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ciproeptadina/análogos & derivados , Fluoruracila/toxicidade , Heme Oxigenase-1/metabolismo , Fígado , Masculino , Estresse Oxidativo , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Ratos
2.
Can J Physiol Pharmacol ; 99(10): 1069-1078, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33887167

RESUMO

The present study aimed to evaluate the protective effects of selenium (Sel) administration against tacrolimus (Tac) - induced lung toxicity and to assess the relation between heme oxygenase 1 (HO-1) and these effects. The study was conducted on 36 Wistar male albino rats equally divided into four groups: (i) normal control; (ii) Sel (0.1 mg/kg per day p.o. for four weeks); (iii) TAC 3 mg/mL as single oral dose on 27th day; and (iv) Tac + Sel. Lung tissues, lung homogenate, and bronchoalveolar lavage of the sacrificed animals were investigated biochemically and histopathologically, by immunohistochemistry or by PCR. The Tac group showed significantly lower expression of HO-1. Administration of Sel was associated with increased HO-1 expression. Oxidative (malondialdehyde, reduced glutathione, superoxide dismutase, myeloperoxidase, and glutathione peroxidase activity) and nitrosative stress (nitric oxide) markers and markers of inflammation (interleukin 1ß (IL-1ß), IL-6, and IL-10) showed changes corresponding to HO-1 levels in rat groups. Tac group showed the highest expression of caspase-3. Sel exerted a protective role against Tac-induced lung toxicity.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Antioxidantes/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Selênio/farmacologia , Tacrolimo/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Interações Medicamentosas , Heme Oxigenase (Desciclizante)/genética , Imunossupressores/toxicidade , Interleucina-10/metabolismo , Masculino , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...