Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 128(12): 127006, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33296241

RESUMO

BACKGROUND: Aryl phosphate esters (APEs) are widely used and commonly present in the environment. Health hazards associated with these compounds remain largely unknown and the effects of diphenyl phosphate (DPhP), one of their most frequent derivatives, are poorly characterized. OBJECTIVE: Our aim was to investigate whether DPhP per se may represent a more relevant marker of exposure to APEs than direct assessment of their concentration and determine its potential deleterious biological effects in chronically exposed mice. METHODS: Conventional animals (FVB mice) were acutely or chronically exposed to relevant doses of DPhP or to triphenyl phosphate (TPhP), one of its main precursors. Both molecules were measured in blood and other tissues by liquid chromatography-mass spectrometry (LC-MS). Effects of chronic DPhP exposure were addressed through liver multi-omics analysis to determine the corresponding metabolic profile. Deep statistical exploration was performed to extract correlated information, guiding further physiological analyses. RESULTS: Multi-omics analysis confirmed the existence of biological effects of DPhP, even at a very low dose of 0.1mg/mL in drinking water. Chemical structural homology and pathway mapping demonstrated a clear reduction of the fatty acid catabolic processes centered on acylcarnitine and mitochondrial ß-oxidation in mice exposed to DPhP in comparison with those treated with vehicle. An interesting finding was that in mice exposed to DPhP, mRNA, expression of genes involved in lipid catabolic processes and regulated by peroxisome proliferator-activated receptor alpha (PPARα) was lower than that in vehicle-treated mice. Immunohistochemistry analysis showed a specific down-regulation of HMGCS2, a kernel target gene of PPARα. Overall, DPhP absorption disrupted body weight-gain processes. CONCLUSIONS: Our results suggest that in mice, the effects of chronic exposure to DPhP, even at a low dose, are not negligible. Fatty acid metabolism in the liver is essential for controlling fast and feast periods, with adverse consequences on the overall physiology. Therefore, the impact of DPhP on circulating fat, cardiovascular pathologies and metabolic disease incidence deserves, in light of our results, further investigations. https://doi.org/10.1289/EHP6826.


Assuntos
Poluentes Ambientais/toxicidade , Fosfatos/toxicidade , Animais , Ésteres/toxicidade , Camundongos , Modelos Químicos , Testes de Toxicidade
2.
Sci Rep ; 10(1): 3245, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094501

RESUMO

Kinase inhibitors hold great potential as targeted therapy against malignant cells. Among them, the tyrosine kinase inhibitor dasatinib is known for a number of clinically relevant off-target actions, attributed in part to effects on components of the immune system, especially conventional T-cells and natural killer (NK)-cells. Here, we have hypothesized that dasatinib also influences non-conventional T-αß cell subsets known for their potential anti-tumoral properties, namely iNKT cells and the distinct new innate CD8 T-cell subset. In mice, where the two subsets were originally characterized, an activated state of iNKT cells associated with a shift toward an iNKT cell Th1-phenotype was observed after dasatinib treatment in vivo. Despite decreased frequency of the total memory CD8 T-cell compartment, the proportion of innate-memory CD8 T-cells and their IFNγ expression in response to an innate-like stimulation increased in response to dasatinib. Lastly, in patients administered with dasatinib for the treatment of BCR-ABL-positive leukemias, we provided the proof of concept that the kinase inhibitor also influences the two innate T-cell subsets in humans, as attested by their increased frequency in the peripheral blood. These data highlight the potential immunostimulatory capacity of dasatinib on innate T-αß cells, thereby opening new opportunities for chemoimmunotherapy.


Assuntos
Dasatinibe/farmacologia , Imunidade Inata , Inibidores de Proteínas Quinases/farmacologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Feminino , Humanos , Memória Imunológica/efeitos dos fármacos , Interferon gama/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia
3.
Front Immunol ; 8: 316, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28396661

RESUMO

Unconventional T cells are defined by their capacity to respond to signals other than the well-known complex of peptides and major histocompatibility complex proteins. Among the burgeoning family of unconventional T cells, innate-like CD8(+) T cells in the mouse were discovered in the early 2000s. This subset of CD8(+) T cells bears a memory phenotype without having encountered a foreign antigen and can respond to innate-like IL-12 + IL-18 stimulation. Although the concept of innate memory CD8(+) T cells is now well established in mice, whether an equivalent memory NK-like T-cell population exists in humans remains under debate. We recently reported that CD8(+) T cells responding to innate-like IL-12 + IL-18 stimulation and co-expressing the transcription factor Eomesodermin (Eomes) and KIR/NKG2A membrane receptors with a memory/EMRA phenotype may represent a new, functionally distinct innate T cell subset in humans. In this review, after a summary on the known innate CD8(+) T-cell features in the mouse, we propose Eomes together with KIR/NKG2A and CD49d as a signature to standardize the identification of this innate CD8(+) T-cell subset in humans. Next, we discuss IL-4 and IL-15 involvement in the generation of innate CD8(+) T cells and particularly its possible dependency on the promyelocytic leukemia zinc-finger factor expressing iNKT cells, an innate T cell subset well documented for its susceptibility to tumor immune subversion. After that, focusing on cancer diseases, we provide new insights into the potential role of these innate CD8(+) T cells in a physiopathological context in humans. Based on empirical data obtained in cases of chronic myeloid leukemia, a myeloproliferative syndrome controlled by the immune system, and in solid tumors, we observe both the possible contribution of innate CD8(+) T cells to cancer disease control and their susceptibility to tumor immune subversion. Finally, we note that during tumor progression, innate CD8(+) T lymphocytes could be controlled by immune checkpoints. This study significantly contributes to understanding of the role of NK-like CD8(+) T cells and raises the question of the possible involvement of an iNKT/innate CD8(+) T cell axis in cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA