Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(2): 108802, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318380

RESUMO

Inflammation is consistently linked to dysmetabolism. In transgenic mice (Def+/+) model the neutrophilic peptide, alpha defensin, proved atherogenic. This phenotype occurred despite favorable cholesterol and glucose levels, and lower body weight and blood pressure. In this study, integration of metabolic&behavioral phenotyping system, endocrine, biochemical and mitochondrial assessment, pathological and immunohistochemical tests, and multiple challenge tests was established to explore the metabolic impact of alpha defensin. Compared to the control group, Def+/+ mice exhibited lower total energy expenditure and carbohydrate utilization, and higher fat oxidation. Their ACTH-cortisol and thyroid profiles were intact. Intriguingly, they had low levels of glucagon, with high ammonia, uric acid, triglyceride, and lactate. Mitochondrial evaluations were normal. Overall, defensin-induced hypoglucagonemia is associated with lipolysis, restricted glucose oxidation, and enhanced wasting. Def+/+ mice may be a useful model for studying the category of lean, apparently metabolically healthy, and atherosclerotic phenotype, with insight into a potential inflammatory-metabolic link.

2.
Br J Haematol ; 196(4): 923-927, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34622440

RESUMO

Patients who are severely affected by coronavirus disease 2019 (COVID-19) may develop a delayed onset 'cytokine storm', which includes an increase in interleukin-6 (IL-6). This may be followed by a pro-thrombotic state and increased D-dimers. It was anticipated that tocilizumab (TCZ), an anti-IL-6 receptor monoclonal antibody, would mitigate inflammation and coagulation in patients with COVID-19. However, clinical trials with TCZ have recorded an increase in D-dimer levels. In contrast to TCZ, colchicine reduced D-dimer levels in patients with COVID-19. To understand how the two anti-inflammatory agents have diverse effects on D-dimer levels, we present data from two clinical trials that we performed. In the first trial, TCZ was administered (8 mg/kg) to patients who had a positive polymerase chain reaction test for COVID-19. In the second trial, colchicine was given (0·5 mg twice a day). We found that TCZ significantly increased IL-6, α-Defensin (α-Def), a pro-thrombotic peptide, and D-dimers. In contrast, treatment with colchicine reduced α-Def and Di-dimer levels. In vitro studies show that IL-6 stimulated the release of α-Def from human neutrophils but in contrast to colchicine, TCZ did not inhibit the stimulatory effect of IL-6; raising the possibility that the increase in IL-6 in patients with COVID-19 treated with TCZ triggers the release of α-Def, which promotes pro-thrombotic events reflected in an increase in D-dimer levels.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Tratamento Farmacológico da COVID-19 , Colchicina/uso terapêutico , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , alfa-Defensinas/imunologia , Idoso , Coagulação Sanguínea/efeitos dos fármacos , COVID-19/sangue , COVID-19/imunologia , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/imunologia , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/imunologia , Humanos , Interleucina-6/sangue , Interleucina-6/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia
3.
Br J Haematol ; 194(1): 44-52, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34053084

RESUMO

The inflammatory response to SARS/CoV-2 (COVID-19) infection may contribute to the risk of thromboembolic complications. α-Defensins, antimicrobial peptides released from activated neutrophils, are anti-fibrinolytic and prothrombotic in vitro and in mouse models. In this prospective study of 176 patients with COVID-19 infection, we found that plasma levels of α-defensins were elevated, tracked with disease progression/mortality or resolution and with plasma levels of interleukin-6 (IL-6) and D-dimers. Immunohistochemistry revealed intense deposition of α-defensins in lung vasculature and thrombi. IL-6 stimulated the release of α-defensins from neutrophils, thereby accelerating coagulation and inhibiting fibrinolysis in human blood, imitating the coagulation pattern in COVID-19 patients. The procoagulant effect of IL-6 was inhibited by colchicine, which blocks neutrophil degranulation. These studies describe a link between inflammation and the risk of thromboembolism, and they identify a potential new approach to mitigate this risk in patients with COVID-19 and potentially in other inflammatory prothrombotic conditions.


Assuntos
COVID-19/metabolismo , Inflamação/metabolismo , Tromboembolia/prevenção & controle , alfa-Defensinas/sangue , Adulto , Idoso , Animais , Coagulação Sanguínea/efeitos dos fármacos , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/virologia , Estudos de Casos e Controles , Colchicina/farmacologia , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Humanos , Inflamação/complicações , Interleucina-6/sangue , Interleucina-6/farmacologia , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Neutrófilos/efeitos dos fármacos , Estudos Prospectivos , Fatores de Risco , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Tromboembolia/etiologia , Trombose/etiologia , Trombose/metabolismo , Moduladores de Tubulina/farmacologia , alfa-Defensinas/farmacologia
5.
PLoS One ; 15(4): e0231582, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32302327

RESUMO

Atherosclerosis, the predominant cause of death in well-resourced countries, may develop in the presence of plasma lipid levels within the normal range. Inflammation may contribute to lesion development in these individuals, but the underlying mechanisms are not well understood. Transgenic mice expressing α-def-1 released from activated neutrophils develop larger lipid and macrophage-rich lesions in the proximal aortae notwithstanding hypocholesterolemia caused by accelerated clearance of α-def-1/low-density lipoprotein (LDL) complexes from the plasma. The phenotype does not develop when the release of α-def-1 is prevented with colchicine. However, ApoE-/- mice crossed with α-def-1 mice or given exogenous α-def-1 develop smaller aortic lesions associated with reduced plasma cholesterol, suggesting a protective effect of accelerated LDL clearance. Experiments were performed to address this seeming paradox and to determine if α-def-1 might provide a means to lower cholesterol and thereby attenuate atherogenesis. We confirmed that exposing ApoE-/- mice to α-def-1 lowers total plasma cholesterol and decreases lesion size. However, lesion size was larger than in mice with total plasma cholesterol lowered to the same extent by inhibiting its adsorption or by ingesting a low-fat diet. Furthermore, α-def-1 levels correlated independently with lesion size in ApoE-/- mice. These studies show that α-def-1 has competing effects on atherogenesis. Although α-def-1 accelerates LDL clearance from plasma, it also stimulates deposition and retention of LDL in the vasculature, which may contribute to development of atherosclerosis in individuals with normal or even low plasma levels of cholesterol. Inhibiting α-def-1 may attenuate the impact of chronic inflammation on atherosclerotic vascular disease.


Assuntos
Aorta/patologia , Aterosclerose/patologia , Colesterol/sangue , alfa-Defensinas/metabolismo , Animais , Anticolesterolemiantes/administração & dosagem , Aterosclerose/sangue , Aterosclerose/etiologia , Aterosclerose/metabolismo , Colesterol/metabolismo , Resina de Colestiramina/administração & dosagem , Colchicina/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/sangue , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Knockout para ApoE , Camundongos Transgênicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , alfa-Defensinas/genética
6.
Blood ; 133(5): 481-493, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30442678

RESUMO

Inflammation and thrombosis are integrated, mutually reinforcing processes, but the interregulatory mechanisms are incompletely defined. Here, we examined the contribution of α-defensins (α-defs), antimicrobial proteins released from activated human neutrophils, on clot formation in vitro and in vivo. Activation of the intrinsic pathway of coagulation stimulates release of α-defs from neutrophils. α-Defs accelerate fibrin polymerization, increase fiber density and branching, incorporate into nascent fibrin clots, and impede fibrinolysis in vitro. Transgenic mice (Def++) expressing human α-Def-1 developed larger, occlusive, neutrophil-rich clots after partial inferior vena cava (IVC) ligation than those that formed in wild-type (WT) mice. IVC thrombi extracted from Def++ mice were composed of a fibrin meshwork that was denser and contained a higher proportion of tightly packed compressed polyhedral erythrocytes than those that developed in WT mice. Def++ mice were resistant to thromboprophylaxis with heparin. Inhibiting activation of the intrinsic pathway of coagulation, bone marrow transplantation from WT mice or provision of colchicine to Def++ mice to inhibit neutrophil degranulation decreased plasma levels of α-defs, caused a phenotypic reversion characterized by smaller thrombi comparable to those formed in WT mice, and restored responsiveness to heparin. These data identify α-defs as a potentially important and tractable link between innate immunity and thrombosis.


Assuntos
Fibrina/imunologia , Ativação de Neutrófilo , Trombose/imunologia , alfa-Defensinas/imunologia , Animais , Coagulação Sanguínea , Fibrina/análise , Fibrinólise , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/patologia , Calicreínas/sangue , Calicreínas/imunologia , Masculino , Camundongos , Conformação Proteica , Estabilidade Proteica , Trombose/sangue , Trombose/patologia , alfa-Defensinas/sangue
7.
J Biol Chem ; 291(6): 2777-86, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26518877

RESUMO

Approximately one-half of the patients who develop clinical atherosclerosis have normal or only modest elevations in plasma lipids, indicating that additional mechanisms contribute to pathogenesis. In view of increasing evidence that inflammation contributes to atherogenesis, we studied the effect of human neutrophil α-defensins on low density lipoprotein (LDL) trafficking, metabolism, vascular deposition, and atherogenesis using transgenic mice expressing human α-defensins in their polymorphonuclear leukocytes (Def(+/+)). Accelerated Def(+/+) mice developed α-defensin·LDL complexes that accelerate the clearance of LDL from the circulation accompanied by enhanced vascular deposition and retention of LDL, induction of endothelial cathepsins, increased endothelial permeability to LDL, and the development of lipid streaks in the aortic roots when fed a regular diet and at normal plasma levels of LDL. Transplantation of bone marrow from Def(+/+) to WT mice increased LDL clearance, increased vascular permeability, and increased vascular deposition of LDL, whereas transplantation of WT bone marrow to Def(+/+) mice prevented these outcomes. The same outcome was obtained by treating Def(+/+) mice with colchicine to inhibit the release of α-defensins. These studies identify a potential new link between inflammation and the development of atherosclerosis.


Assuntos
Aterosclerose/sangue , Colesterol/sangue , Células Endoteliais/metabolismo , Lipoproteínas LDL/sangue , Processamento de Proteína Pós-Traducional , alfa-Defensinas/sangue , Animais , Aterosclerose/genética , Aterosclerose/patologia , Catepsinas/sangue , Catepsinas/genética , Colesterol/genética , Colchicina/farmacologia , Células Endoteliais/patologia , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/patologia , Lipoproteínas LDL/genética , Masculino , Camundongos , Camundongos Transgênicos , Complexos Multiproteicos/sangue , Complexos Multiproteicos/genética , alfa-Defensinas/genética
8.
Blood ; 125(16): 2558-67, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25673638

RESUMO

Persistent intracerebral hemorrhage (ICH) is a major cause of death and disability after traumatic brain injury (TBI) for which no medical treatment is available. Delayed bleeding is often ascribed to consumptive coagulopathy initiated by exposed brain tissue factor. We examined an alternative hypothesis, namely, that marked release of tissue-type plasminogen activator (tPA) followed by delayed synthesis and release of urokinase plasminogen activator (uPA) from injured brain leads to posttraumatic bleeding by causing premature clot lysis. Using a murine model of severe TBI, we found that ICH is reduced in tPA(-/-) and uPA(-/-) mice but increased in PAI-1(-/-) mice compared with wild-type (WT) mice. tPA(-/-), but not uPA(-/-), mice developed a systemic coagulopathy post-TBI. Tranexamic acid inhibited ICH expansion in uPA(-/-)mice but not in tPA(-/-) mice. Catalytically inactive tPA-S(481)A inhibited plasminogen activation by tPA and uPA, attenuated ICH, lowered plasma d-dimers, lessened thrombocytopenia, and improved neurologic outcome in WT, tPA(-/-), and uPA(-/-) mice. ICH expansion was also inhibited by tPA-S(481)A in WT mice anticoagulated with warfarin. These data demonstrate that protracted endogenous fibrinolysis induced by TBI is primarily responsible for persistent ICH and post-TBI coagulopathy in this model and offer a novel approach to interrupt bleeding.


Assuntos
Lesões Encefálicas/complicações , Hemorragia Cerebral/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Antifibrinolíticos/farmacologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Lesões Encefálicas/sangue , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/genética , Fibrina/metabolismo , Fibrinólise/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ligação Proteica , Fatores de Tempo , Ativador de Plasminogênio Tecidual/genética , Ácido Tranexâmico/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...