Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710245

RESUMO

A simple technique was developed for the modification of cotton materials that is inexpensive, environmentally friendly, and very effective. Waste Cotton fabrics (WCFs) are loaded with propolis extract (PE) for Cu2+ removal. Then, Cu2+ underwent a pyrolysis process with modified cuttlebone (CB) at 900 °C for 5 h. The surface of the prepared materials was characterized using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray (SEM-EDX), Fourier transform infrared (FTIR), BET, particle sizes, thermogravimetric analysis (TGA) and zeta potential analysis. The Cu2+ metal ions from an aqueous solution were removed using WCFs/PE, and DLM was subsequently removed using pyro WCFs/PE/Cu/CB. The as-prepared NPs exhibited the face-centered cubic structure of WCFs/PE/Cu/CB with crystallite sizes ranging from 386.70 to 653.10 nm. FTIR spectra revealed that CB was present on the surface of the resulting WCFs/PE/Cu. SEM revealed the dispersion of a uniformly flower-like morphology over a large area. Sorption studies were performed based on parameters that included pH, dose, contact time, and initial concentration. The adsorption isotherm and the kinetic studies of the DLM adsorption process were applied at a pH of 5.0 and a temperature of 25 °C using several isotherms and kinetic models. The results revealed qmax (20.51 mg/g) with R2 = 0.97, the Langmuir isotherm that best matches the experimental data. Hence, the Langmuir isotherm suggests that it is the model that best describes sorption on homogenous surfaces or surface-supporting sites with various affinities. The correlation coefficient R2, χ2, adjusted correlation coefficient, and error functions like root mean square (RMSE), normalized root mean square error (NRMES), and mean absolute error (MAE) were used to evaluate the best-fit models to the experimental adsorption data. Moreover, cost estimation for the prepared adsorbent WCFs/PE/Cu showed that it costs approximately 3 USD/g, which is a cheap adsorbent compared to other similar adsorbents reported in the literature. The examined WCFs/PE have significant applicability potential for Cu2+-laden wastewater treatment due to their superior Cu2+ metal ions adsorption capability and reusability. The cytotoxicity and safety study showed that at higher concentrations, it resulted in much less cell viability. Additionally, the removal efficiency of Cu2+ metal ions from synthetic, realistic industrial wastewater using WCFs/PE reached up to 96.29 %, demonstrating good adsorption capability. Thus, there is a huge possibility of accomplishing this and performing well. This study paves the way for the reuse and valorization of selected adsorbents following circular economy principles. Two green metrics were applied, the Analytical Eco-scale and the Analytical GREEnness Calculator (AGREE).


Assuntos
Cobre , Fibra de Algodão , Nanocompostos , Nitrilas , Piretrinas , Pirólise , Poluentes Químicos da Água , Cobre/química , Nanocompostos/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Nitrilas/química , Piretrinas/química , Piretrinas/isolamento & purificação , Purificação da Água/métodos , Cinética , Concentração de Íons de Hidrogênio , Própole/química
2.
Int J Nanomedicine ; 15: 619-631, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32099355

RESUMO

BACKGROUND: Certainly, there is a demand for stronger recognition of how nanoparticles can move through the cell membrane. Prostate cancer is one of the forcing sources of cancer-relevant deaths among men. AIM OF THE WORK: The current research studied the power of prostate cancer cells to uptake a ternary nanocomposite TNT/CuFe2O4/Zn-Fe mixed metal oxides (MMO). METHODOLOGY: The nanocomposite was synthesized by a chemical method and characterized by a High-resolution transmission electron microscope, Field emission scanning electron microscope, X-ray diffraction, Fourier transmission infra-red, X-ray photoelectron spectroscopy, dynamic light scattering. Besides, it was implemented as an inorganic anticancer agent versus Prostate cancer PC-3 cells. RESULTS: The results revealed cellular uptake validity, cell viability reduction, ultra-structures alterations, morphological changes and membrane damage of PC-3 cells. CONCLUSION: The prepared ternary nanocomposite was highly uptake by PC-3 cells and possessed cytotoxicity that was dose and time-dependent. To conclude, the study offered the potential of the investigated ternary nanocomposite as a promising prostate anticancer agent.


Assuntos
Antineoplásicos/farmacocinética , Nanocompostos/química , Nanotubos/química , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular , Cobre/química , Difusão Dinâmica da Luz , Humanos , Ferro/química , Masculino , Microscopia Eletrônica de Transmissão , Nanocompostos/administração & dosagem , Óxidos/química , Espectroscopia Fotoeletrônica , Neoplasias da Próstata/patologia , Titânio/química , Difração de Raios X , Zinco/química
3.
RSC Adv ; 9(56): 32544-32561, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35529712

RESUMO

Nowadays, improving the physico-chemical properties of nanomaterials to enhance their performance towards various applications is urgent. Accordingly, gamma irradiation (GI) has evolved and attracted wide attention as a promising green technique to meet this need. In the current study, a Co-Fe LDH was used as a model 2D nanomaterial and was irradiated by GI (dose = 100 kGy). The sample was characterized via XRD, FTIR, FESEM, HRTEM, hydrodynamic size, zeta potential, and BET surface area measurements. The results showed that after irradiation, the surface area of the sample increased from 83 to 89 m2 g-1. Moreover, irradiation increased its dielectric constant, dielectric loss and AC conductivity. In addition, the sample showed superparamagnetic behavior, where its saturation magnetization increased from 1.28 to 52.04 emu g-1 after irradiation. Furthermore, the adsorption capacity of the irradiated LDH towards malachite green (MG) and methylene blue (MB) as model wastewater pollutants was also studied. The exposure of LDH to GI enhanced its adsorption capacity for MG from 44.73 to 54.43 mg g-1. The Langmuir-Freundlich, Sips, and Baudu models were well suited for both MG and MB adsorption among the six fitted isotherm models. The pseudo-first and second order models fit the adsorption kinetics better than the intraparticle diffusion model for both dyes. The interaction of MB and MG with the LDH surface was further investigated in dry and aqueous solution using Grand canonical Monte Carlo and molecular dynamics simulations. These two techniques provided insight into the adsorption mechanism, which is vital to understand the adsorption process by the LDH nanosheets and their possible use in practical applications. Moreover, the Co-Fe LDH showed good antibacterial activity against both Gram-positive and Gram-negative bacteria strains. Furthermore, due to its magnetic property, the Co-Fe LDH could be simply recovered from water by magnetic separation at a low magnetic field after the adsorption process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...