Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049031

RESUMO

Nano-structured Mo/Fe intermetallics were synthesized from precursors that contained 72/28% and 30/70% molar ratios of Mo/Fe, which were given as precursors A and B, respectively. These precursors were prepared from the co-precipitation of aqueous hot solutions of ammonium heptamolybdate tetrahydrate (AHM) and ferrous oxalate. The dry precipitates were thermally treated using TG-DSC to follow up their behavior during roasting, in an Ar atmosphere of up to 700 °C (10° K/min). The TG profile showed that 32.5% and 55.5% weight losses were measured from the thermal treatment of precursors A and B, respectively. The DSC heat flow profile showed the presence of endothermic peaks at 196.9 and 392.5-400 °C during the thermal decomposition of the AHM and ferrous oxalate, respectively. The exothermic peak that was detected at 427.5 °C was due to the production of nano-sized iron molybdate [Fe2(MoO4)3]. An XRD phase analysis indicated that iron molybdate was the only phase that was identified in precursor A, while iron molybdate and Fe2O3 were produced in precursor B. Compacts were made from the pressing of the nano-sized precursors, which were roasted at 500 °C for 3 h. The roasted compacts were isothermally reduced in H2 at 600-850 °C using microbalance, and the O2 weight loss that resulted from the reduction reactions was continuously recorded as a function of time. The influence of the reduction temperature and precursor composition on the reduction behavior of the precursors was studied and discussed. The partially and completely reduced compacts were examined with X-ray powder diffraction (XRD), a reflected light microscope (RLM), and a scanning electron microscope (SEM-EDS). Depending on the precursor composition, the reduction reactions of the [Fe2(MoO4)3] and Fe2O3 proceeded through the formation of intermediate lower oxides, prior to the production of the MO/Fe intermetallic alloys. Based on the intermediate phases that were identified and characterized at the early, intermediate, and final reduction degrees, chemical reaction equations were given to follow up the formation of the MoFe and MoFe3 intermetallic alloys. The mechanism of the reduction reactions was predicted from the apparent activation energy values (Ea) that were computed at the different reduction degrees. Moreover, mathematical formulations that were derived from the gas-solid reaction model were applied to confirm the reduction mechanisms, which were greatly dependent on the precursor composition and reduction temperature. However, it can be reported that nano-structured MoFe and MoFe3 intermetallic alloys can be successfully fabricated via a gas-solid reaction technique at lower temperatures.

2.
Materials (Basel) ; 15(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683204

RESUMO

Enhanced non-linearity and asymmetric behavior of the Cr/metal oxide diode is reported, with the addition of two insulator layers of SnO2 and NiO to form the metal-insulator-insulator-metal (MIIM) configuration. Such an MIIM diode shows potential for various applications (rectifiers and electronic equipment) which enable the femtosecond fast intoxication in MIIM diodes. In this work, nanostructured multi-layer Cr/SnO2/NiO/Cr coatings were fabricated via e-beam evaporation with the following thicknesses: 150 nm/20 nm/10 nm/150 nm. Coatings were characterized via Rutherford backscattering (RBS), scanning electron microscopy (SEM), and two-probe conductivity testing. RBS confirmed the layered structure and optimal stoichiometry of the coatings. A non-linear and asymmetric behavior at <1.5 V applied bias with the non-linearity maximum of 2.6 V−1 and the maximum sensitivity of 9.0 V−1 at the DC bias point was observed. The promising performance of the coating is due to two insulating layers which enables resonant tunneling and/or step-tunneling. Based on the properties, the present multi-layer coatings can be employed for MIIM application.

3.
Materials (Basel) ; 13(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321912

RESUMO

Interfacial bonding highly affects the quality of bimetallic bearing materials, which primarily depend upon the surface quality of a solid metal substrate in liquid-solid compound casting. In many cases, an intermediate thin metallic layer is deposited on the solid substrate before depositing the liquid metal, which improves the interfacial bonding of the opposing materials. The present work aims to develop and optimize the tinning process of a solid carbon steel substrate after incorporating flux constituents with the tin powder. Five ratios of tin-to-flux-i.e., 1:1, 1:5, 1:10, 1:15, and 1:20-were used for tinning process of carbon steel solid substrate. Furthermore, the effect of volume ratios of liquid Al-based bearing alloy to solid steel substrate were also varied-i.e., 5:1, 6.5:1 and 8.5:1-to optimize the microstructural and mechanical performance, which were evaluated by interfacial microstructural investigation, bonding area determination, hardness and interfacial strength measurements. It was found that a tin-to-flux ratio of 1:10 offered the optimum performance in AlSn12Si4Cu1/steel bimetallic materials, showing a homogenous and continuous interfacial layer structure, while tinned steels using other percentages showed discontinuous and thin layers, as in 1:5 and 1:15, respectively. Furthermore, bimetallic interfacial bonding area and hardness increased by increasing the volume ratio of liquid Al alloy to solid steel substrate. A complete interface bonding area was achieved by using the volume ratio of liquid Al alloy to solid steel substrate of ≥8.5.

4.
Environ Monit Assess ; 191(11): 699, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31667650

RESUMO

Effects of industrial and municipal wastewaters on the freshwater snail, Lanistes carinatus, were evaluated. Concentrations of some chemicals in some effluents were greater than permissible limits promulgated internationally by various jurisdictions. Pesticides and polychlorinated biphenyls (PCBs) observed in tissues of snails collected during summer were greater than those measured in snails collected during winter. Catalase activities observed during autumn were greater than those observed during other seasons. Activities of catalase were greater at all sites near sources of contamination than in snails from the reference site (S6). Lactate dehydrogenase activity was also greater at all sites relative to the location designated as the reference (S6), at which activities did not exceed 8.10 U/L. Patterns of genomic DNA in snails, as determined by use of OPA-02 primer, were significantly different among sites. Location S1 (Belshay village) exhibited 11 bands, followed by S2 (El-Demer zone) and S5 (Rosetta branch) which exhibited 6 bands. In contrast, all sites exhibited greater numbers of bands when the OPA-08 primer was used. Thus, DNA fingerprinting, lactate dehydrogenase, and catalase offer useful biomarkers in ecotoxicology and risk assessment programs.


Assuntos
Monitoramento Ambiental , Compostos Orgânicos/toxicidade , Caramujos/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Catalase , Ecotoxicologia , Egito , Água Doce , Compostos Orgânicos/análise , Praguicidas , Bifenilos Policlorados , Estações do Ano , Poluentes Químicos da Água/análise
5.
Hum Exp Toxicol ; 38(6): 734-745, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30935239

RESUMO

A quantitative assessment of the genotoxicity of silver nanoparticles (AgNPs) ascribed to its transplacental transfer and tissue distribution in pregnant rats was carried out in this study. A single intravenous (i.v.) injection of AgNPs with a size range from 4.0 to 17.0 nm was administered to pregnant rats at a dose of 2 mg/kg b.w. on the 19th day of gestation. Five groups beside control, each of the five rats were euthanized after 10 min, 1, 6, 12, or 24 h, respectively. The accumulation of nanoparticles (NPs) in mother and fetal tissues was quantified by inductively coupled plasma optical emission spectroscopy, where the highest accumulation level was recorded in maternal blood (0.523 µg/ml) after 24 h of administration. AgNPs induced accumulation in spleen tissue higher than placenta and fetal tissue homogenates. The data showed significantly detected levels of 8-hydroxydeoxyguanosine in all collected samples from administered animals compared with untreated individuals. Level of 8-OHdG in amniotic fluid exhibited the greatest values followed by maternal spleen, kidneys, and liver, respectively. Investigation by transmission electron microscope showed that the transfer of AgNPs through placental wall caused indentation of nuclei, clumped chromatin, pyknotic nuclei, and focal necrotic areas, while AgNPs appeared mainly accumulated in the macrophages of the spleen. Therefore, the data assume that the genotoxicity studies of AgNPs must be recommended during a comprehensive assessment of the safety of novel types of NPs and nanomaterials. Additionally, exposure to AgNPs must be prevented or minimized during pregnancy or prenatal periods.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/metabolismo , Dano ao DNA , Troca Materno-Fetal , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Líquido Amniótico/metabolismo , Animais , Feminino , Feto/metabolismo , Rim/metabolismo , Fígado/metabolismo , Microscopia Eletrônica de Transmissão , Placenta/metabolismo , Placenta/ultraestrutura , Gravidez , Ratos Wistar , Prata/sangue , Prata/farmacocinética , Baço/metabolismo , Baço/ultraestrutura
6.
Chemosphere ; 93(6): 1131-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23987578

RESUMO

The oxidative stress in the digestive gland of the land snail Helix aspersa was considered as a bioindicator for atmospheric pollution with heavy metals from several industries and vehicular traffic in Kafr El-Zayat city. Regional means of heavy metals concentration of all sites were 0.71, 7.09, 0.71, 2.68, 41.44 and 18.01 mg kg(-1) wet mass for Cd, Mn, Ni, Pb, Zn and Cu, respectively. In addition, the highest values of Cd concentrations were found 1.22 and 1.73 mg kg(-1) wet mass in S1 (Potato International Center) and S4 (The Nile bank), respectively. Lactate dehydrogenase (D-LDH(and recorded lipid peroxidation (LPO) levels were significantly high in S1 and S2 (Traffic station). On the other hand, the highest activity of catalase (CAT) was found in S2 (194.04% of control), while the activity of glutathione peroxidase (GPx) reached the highest significant value in S1. As a matter of fact, glutathione-S-transferase (GST) and glutathione reductase (GR) activities were significantly higher in polluted sites than in reference zone. In contrast, the glutathione (GSH) concentration of exposed animals showed significant decrease in all sites, with the lowest value in S1 (57.61% of control). However, metallothioneins concentration (MT) showed no significant difference in all sites except in S1 which accounted for 127.81% of control. Therefore, the overall results of this study showed the importance of H. aspersa as a sentinel organism for biomonitoring the biologic impact of atmospheric pollution in urban areas.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Animais , Catalase/metabolismo , Cidades , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Caracois Helix , Metalotioneína/metabolismo , Estresse Oxidativo
7.
J Nanosci Nanotechnol ; 6(1): 114-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16573080

RESUMO

Cu0.5Zn0.5Fe2O4 nanocrystallite powders (average size 13 nm) were synthesized from Cu-Zn spent catalyst (fertilizers) industries and ferrous sulfate wastes formed during iron and steel making. Cu-Zn catalyst (22.4% Cu and 26.4% Zn) was chemically treated with sulfuric acid at temperature 80 degrees C for 1 hr for the complete dissolving of copper and zinc into sulfate solution, then the produced solution was mixed with stoichiometric ratio of ferrous sulfate and the mixture was chemically precipitated as hydroxides followed by hydrothermal processing. The parameters affecting the magnetic properties and crystallite size of the produced ferrites powder e.g., temperature, time, and pH were systemically studied. X-ray diffraction analysis was used in order to determine the average crystallite size and phase identifications of the produced powder. The magnetic properties were studied by vibrating sample magnetometry. The results showed that the average crystallite size of the powder decreased for the ferrites powder formed at 150 degrees C and then increased by increasing the temperature to 200 degrees C. Interestingly, the saturation magnetization (Bs), remanent magnetization (Br) and coercive force (Hc) were 25.03 emu/g, 0.71 emu/g, and 4.83 Oe, respectively at hydrothermal temperature 150 degrees C for 24 hr and changed to 16.38 emu/g, 0.3864 emu/g, and 5.2 Oe at 150 degrees C and 72 hr. The produced nanoferrite powders are used for studying the catalytic activity of CO conversion to CO2 at different temperatures, pH and times. The maximum conversion (82%) is obtained at temperature 150 degrees C for 24 hrs and pH 12.


Assuntos
Cobre/química , Compostos Férricos/química , Óxidos/química , Zinco/química , Catálise , Cristalização , Nanoestruturas/química , Termodinâmica , Difração de Raios X
8.
Chemosphere ; 63(9): 1491-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16289700

RESUMO

The study was carried out from spring 1999 to spring 2001 to monitor the residue levels of organophosphorus pollutants (OPP) in aquatic environment of the drainage canal surrounding a pesticide factory at Damietta Governorate. Water, sediment, and fish samples were collected at six different seasonal periods. OPPs were analyzed by GLC and confirmed using GC-MS. Chlorpyrifos, chlorpyrifos-methyl, malathion, diazinon, pirimiphos-methyl and profenofos were detected in most samples. Chlorpyrifos was dominant in all water and sediment samples. It was ranged from 24.5 to 303.8 and 0.9 to 303.8 ppb in water and sediment samples, respectively. Diazinon level was slightly similar to chlorpyrifos in fish samples. Data based on the grand total concentration of OPP showed that the most polluted samples were collected either at spring 1999 or autumn 2000. They were 675.5 and 303.8 ppb in water samples and 43.0 and 52.2 ppb in fish collected at spring 1999 and autumn 2000, respectively. The obtained results are in parallel to that found in case of cholinesterase activity where the activity of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was declined at these seasonal period. The activity levels of AChE and BuChE were found to be 77.18% and 59.67% of control at spring 1999 and 78.62% and 85.80% of control, at autumn 2000, respectively. Thus, AChE and BuChE could be used as biomarkers for tracing and biomonitoring OPP pollution.


Assuntos
Biomarcadores/análise , Colinesterases/análise , Monitoramento Ambiental/métodos , Compostos Organofosforados/análise , Poluentes Químicos da Água/análise , Animais , Indústria Química , Clorpirifos/análise , Diazinon/análise , Egito , Peixes/metabolismo , Sedimentos Geológicos , Resíduos Industriais , Resíduos de Praguicidas/análise , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA