Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(17): e202317794, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38424035

RESUMO

Tin halide perovskites (THPs) have demonstrated exceptional potential for various applications owing to their low toxicity and excellent optoelectronic properties. However, the crystallization kinetics of THPs are less controllable than its lead counterpart because of the higher Lewis acidity of Sn2+, leading to THP films with poor morphology and rampant defects. Here, a colloidal zeta potential modulation approach is developed to improve the crystallization kinetics of THP films inspired by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. After adding 3-aminopyrrolidine dihydro iodate (APDI2) in the precursor solution to change the zeta potential of the pristine colloids, the total interaction potential energy between colloidal particles with APDI2 could be controllably reduced, resulting in a higher coagulation probability and a lower critical nuclei concentration. In situ laser light scattering measurements confirmed the increased nucleation rate of the THP colloids with APDI2. The resulting film with APDI2 shows a pinhole-free morphology with fewer defects, achieving an impressive efficiency of 15.13 %.

2.
Photochem Photobiol Sci ; 20(3): 357-367, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33721271

RESUMO

Hybrid organic-inorganic perovskite solar cells (PSCs) are promising new generations of solar cells, which is low in cost with high power conversion efficiency (PCE). However, PSCs suffer from structural defects generated from the under coordinated ions at the surface, which limits their photovoltaic performances. Herein we report, two ß-diketone Lewis base additives 2,4-pentanedione and 3-methyl-2,4-nonanedione within the chlorobenzene anti-solvent to passivate the surface defects generated from the under coordinated Pb2+ ions in CH3NH3PbI3 perovskite films. The incorporation of the two ß-diketone passivators could successfully enhance the open-circuit voltage of the PSCs by 52 mV and 17 mV for 3-methyl-2,4-nonanedione and 2,4-pentanedione, respectively, with improved PCE by 45% for 3-methyl-2,4-nonanedione compared to the pristine PSC. This enhancement in the photovoltaic performance of the PSCs can be attributed to passivation of the defects through the interaction between two carbonyl groups of the ß-diketone Lewis base additives and the under coordinated Pb2+ defects in the perovskite film, which improved the PSCs PCE and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...